A classical theorem of A. D. Alexandrov says that a connected compact smooth hypersurface in Euclidean space with constant mean curvature must be a sphere. We give exposition to some results on symmetry properties of hypersurfaces with ordered mean curvature and associated variations of the Hopf Lemma. Some open problems will be discussed.
Citation: YanYan Li. Symmetry of hypersurfaces and the Hopf Lemma[J]. Mathematics in Engineering, 2023, 5(5): 1-9. doi: 10.3934/mine.2023084
A classical theorem of A. D. Alexandrov says that a connected compact smooth hypersurface in Euclidean space with constant mean curvature must be a sphere. We give exposition to some results on symmetry properties of hypersurfaces with ordered mean curvature and associated variations of the Hopf Lemma. Some open problems will be discussed.
[1] | A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Vestnik Leningrad. Univ., 11 (1956), 5–17. |
[2] |
M. P. Do Carmo, H. B. Lawson, On Alexandrov-Bernstein theorems in hyperbolic space, Duke Math. J., 50 (1983), 995–1003. https://doi.org/10.1215/S0012-7094-83-05041-X doi: 10.1215/S0012-7094-83-05041-X
![]() |
[3] | H. Hopf, Differential geometry in the large. Seminar Lectures New York University 1946 and Stanford University 1956, Berlin, Heidelberg: Springer, 1983. https://doi.org/10.1007/978-3-662-21563-0 |
[4] |
W.-Y. Hsiang, Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces. I, J. Differential Geom., 17 (1982), 337–356. https://doi.org/10.4310/jdg/1214436924 doi: 10.4310/jdg/1214436924
![]() |
[5] | Y. Y. Li, Group invariant convex hypersurfaces with prescribed Gauss-Kronecker curvature, In: Multidimensional complex analysis and partial differential equations, Providence, RI: Amer. Math. Soc., 1997,203–218. |
[6] |
Y. Y. Li, L. Nirenberg, A geometric problem and the Hopf Lemma. I, J. Eur. Math. Soc., 8 (2006), 317–339. https://doi.org/10.4171/JEMS/55 doi: 10.4171/JEMS/55
![]() |
[7] |
Y. Y. Li, L. Nirenberg, A geometric problem and the Hopf Lemma. II, Chin. Ann. Math. Ser. B, 27 (2006), 193–218. https://doi.org/10.1007/s11401-006-0037-3 doi: 10.1007/s11401-006-0037-3
![]() |
[8] | Y. Y. Li, L. Nirenberg, Partial results on extending the Hopf Lemma, Rendiconti Di Matematica Serie VII, 29 (2009), 97–115. |
[9] |
Y. Y. Li, X. Yan, Y. Yao, Symmetry of hypersurfaces with ordered mean curvature in one direction, Calc. Var., 60 (2021), 173. https://doi.org/10.1007/s00526-021-02030-5 doi: 10.1007/s00526-021-02030-5
![]() |
[10] | B. Nelli, A survey on Alexandrov-Bernstein-Hopf theorems, Mat. Contemp., 35 (2008), 151–176. |
[11] |
Y. Pan, M. Wang, Y. Yan, A Hopf lemma for higher order differential inequalities and its applications, J. Differ. Equations, 255 (2013), 2826–2845. https://doi.org/10.1016/j.jde.2013.07.017 doi: 10.1016/j.jde.2013.07.017
![]() |
[12] |
R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space form, J. Differential Geom., 8 (1973), 465–477. https://doi.org/10.4310/jdg/1214431802 doi: 10.4310/jdg/1214431802
![]() |
[13] |
A. Ros, Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differential Geom., 27 (1988), 215–220. https://doi.org/10.4310/jdg/1214441779 doi: 10.4310/jdg/1214441779
![]() |
[14] |
W. Sun, J. Bao, New maximum principles for fully nonlinear ODEs of second order, Discrete Contin. Dyn. Syst., 19 (2007), 813–823. https://doi.org/10.3934/dcds.2007.19.813 doi: 10.3934/dcds.2007.19.813
![]() |
[15] |
H. C. Wente, Counterexample to a conjecture of H. Hopf, Pac. J. Math., 121 (1986), 193–243. https://doi.org/10.2140/pjm.1986.121.193 doi: 10.2140/pjm.1986.121.193
![]() |