Research article Special Issues

Singular structures in solutions to the Monge-Ampère equation with point masses

  • Received: 29 April 2022 Revised: 23 October 2022 Accepted: 23 October 2022 Published: 13 April 2023
  • We construct new examples of Monge-Ampère metrics with polyhedral singular structures, motivated by problems related to the optimal transport of point masses and to mirror symmetry. We also analyze the stability of the singular structures under small perturbations of the data given in the problem under consideration.

    Citation: Connor Mooney, Arghya Rakshit. Singular structures in solutions to the Monge-Ampère equation with point masses[J]. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023083

    Related Papers:

  • We construct new examples of Monge-Ampère metrics with polyhedral singular structures, motivated by problems related to the optimal transport of point masses and to mirror symmetry. We also analyze the stability of the singular structures under small perturbations of the data given in the problem under consideration.



    加载中


    [1] A. D. Alexandrov, Smoothness of the convex surface of bounded Gaussian curvature, C. R. (Doklady) Acad. Sci. URSS (N. S.), 36 (1942), 195–199.
    [2] L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. Math., 131 (1990), 129–134. http://doi.org/10.2307/1971509 doi: 10.2307/1971509
    [3] L. A. Caffarelli, A note on the degeneracy of convex solutions to the Monge-Ampère equation, Commun. Part. Diff. Eq., 18 (1993), 1213–1217. http://doi.org/10.1080/03605309308820970 doi: 10.1080/03605309308820970
    [4] L. A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc., 5 (1992), 99–104. http://doi.org/10.1090/S0894-0347-1992-1124980-8 doi: 10.1090/S0894-0347-1992-1124980-8
    [5] L. Caffarelli, Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549–583. http://doi.org/10.1002/cpa.10067 doi: 10.1002/cpa.10067
    [6] L. Caffarelli, Y. Y. Li, Some multi-valued solutions to Monge-Ampère equations, Commun. Anal. Geom., 14 (2006), 411–441. http://doi.org/10.4310/CAG.2006.v14.n3.a1 doi: 10.4310/CAG.2006.v14.n3.a1
    [7] J. Y. Chen, R. Shankar, Y. Yuan, Regularity for convex viscosity solutions of special Lagrangian equation, arXiv: 1911.05452.
    [8] S. Y. Cheng, S.-T. Yau, On the regularity of the Monge-Ampère equation $\det \partial^2u/\partial x_i \partial x_j = F(x, u)$, Commun. Pure Appl. Math., 30 (1977), 41–68. http://doi.org/10.1002/cpa.3160300104 doi: 10.1002/cpa.3160300104
    [9] G. De Philippis, Regularity of optimal transport maps and applications, PhD thesis, Scuola Normale Superiore, 2012.
    [10] C. E. Gutiérrez, The Monge-Ampère equation, Boston, MA: Birkhäuser, 2001. http://doi.org/10.1007/978-1-4612-0195-3
    [11] G. Huang, L. Tang, X.-J. Wang, Regularity of free boundary for the Monge-Ampère obstacle problem, arXiv: 2111.10575.
    [12] F. Jiang, N. S. Trudinger, On the second boundary value problem for Monge-Ampère type equations and geometric optics, Arch. Rational Mech. Anal., 229 (2018), 547–567. http://doi.org/10.1007/s00205-018-1222-8 doi: 10.1007/s00205-018-1222-8
    [13] T. Jin, J. Xiong, Solutions of some Monge-Ampère equations with isolated and line singularities, Adv. Math., 289 (2016), 114–141. http://doi.org/10.1016/j.aim.2015.11.029 doi: 10.1016/j.aim.2015.11.029
    [14] Y. Li, SYZ conjecture for Calabi-Yau hypersurfaces in the Fermat family, Acta Math., 229 (2022), 1–53. https://dx.doi.org/10.4310/ACTA.2022.v229.n1.a1 doi: 10.4310/ACTA.2022.v229.n1.a1
    [15] J. Liu, N. S. Trudinger, On the classical solvability of near field reflector problems, Discrete Contin. Dyn. Syst., 36 (2016), 895–916. http://doi.org/10.3934/dcds.2016.36.895 doi: 10.3934/dcds.2016.36.895
    [16] J. C. Loftin, Singular semi-flat Calabi-Yau metrics on $\mathbb{S}^2$, Commun. Anal. Geom., 13 (2005), 333–361. http://doi.org/10.4310/CAG.2005.v13.n2.a3 doi: 10.4310/CAG.2005.v13.n2.a3
    [17] J. Loftin, S.-T. Yau, E. Zaslow, Affine manifolds, SYZ geometry and the "Y"-vertex, J. Differential Geom., 71 (2005), 129–158. http://doi.org/10.4310/jdg/1143644314 doi: 10.4310/jdg/1143644314
    [18] C. Mooney, Partial regularity for singular solutions to the Monge-Ampère equation, Commun. Pure Appl. Math., 68 (2015), 1066–1084. http://doi.org/10.1002/cpa.21534 doi: 10.1002/cpa.21534
    [19] C. Mooney, Solutions to the Monge-Ampere equation with polyhedral and Y-shaped singularities, J. Geom. Anal., 31 (2021), 9509–9526. http://doi.org/10.1007/s12220-021-00615-2 doi: 10.1007/s12220-021-00615-2
    [20] A. Pogorelov, The regularity of the generalized solutions of the equation $\det\left(\frac{\partial^2u}{\partial x_i \partial x_j}\right) = \phi(x_1, x_2, ..., x_n) > 0$, (Russian), Dokl. Akad. Nauk SSSR, 200 (1971), 534–537.
    [21] O. Savin, The obstacle problem for the Monge-Ampère equation, Calc. Var., 22 (2005), 303–320. http://doi.org/10.1007/s00526-004-0275-8 doi: 10.1007/s00526-004-0275-8
    [22] N. S. Trudinger, On the local theory of prescribed Jacobian equations, Discrete Contin. Dyn. Syst., 34 (2014), 1663–1681. http://doi.org/10.3934/dcds.2014.34.1663 doi: 10.3934/dcds.2014.34.1663
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1166) PDF downloads(144) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog