Citation: Yannick Sire, Susanna Terracini, Stefano Vita. Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions[J]. Mathematics in Engineering, 2021, 3(1): 1-50. doi: 10.3934/mine.2021005
[1] | Allen M, Shahgholian H (2019) A new boundary Harnack principle (equations with right hand side). Arch Ration Mech Anal 234: 1413-1444. doi: 10.1007/s00205-019-01415-3 |
[2] | Bogdan K, Dyda B (2011) The best constant in a fractional Hardy inequality. Math Nachr 284: 629-638. doi: 10.1002/mana.200810109 |
[3] | Caffarelli L, Fabes E, Mortola S, et al. (1981) Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana U Math J 30: 621-640. doi: 10.1512/iumj.1981.30.30049 |
[4] | Caffarelli L, Silvestre L (2007) An extension problem related to the fractional Laplacian. Commun Part Diff Eq 32: 1245-1260. doi: 10.1080/03605300600987306 |
[5] | Caffarelli L, Stinga P (2016) Fractional elliptic equations, Caccioppoli estimates and regularity. Ann I H Poincaré (C) Non Linear Anal 33: 767-807. |
[6] | De Silva D, Savin O (2015) A note on higher regularity boundary Harnack inequality. DCDS-A 35: 6155-6163. doi: 10.3934/dcds.2015.35.6155 |
[7] | Epstein CL, Mazzeo R (2013) Degenerate Diffusion Operators Arising in Population Biology. Princeton: Princeton University Press. |
[8] | Fabes E, Kenig C, Serapioni R (1982) The local regularity of solutions of degenerate elliptic equations. Commun Part Diff Eq 7: 77-116. doi: 10.1080/03605308208820218 |
[9] | Fabes E, Jerison D, Kenig C (1982) The Wiener test for degenerate elliptic equations. Ann I Fourier 32: 151-182. |
[10] | Fabes E, Jerison D, Kenig C (1983) Boundary behavior of solutions to degenerate elliptic equations. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I & II, Belmont: Wadsworth, 577-589. |
[11] | Gilbarg D, Trudinger NS (1983) Elliptic Partial Differential Equations of Second Order, 2 Eds., Berlin: Springer-Verlag. |
[12] | Hajlasz P (1996) Sobolev spaces on an arbitrary metric space. Potential Anal 5: 403-415. |
[13] | Jhaveri Y, Neumayer R (2017) Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian. Adv Math 311: 748-795. doi: 10.1016/j.aim.2017.03.006 |
[14] | Jerison D, Kenig C (1982) Boundary behavior of harmonic functions in nontangentially accessible domains. Adv Math 46: 80-147. doi: 10.1016/0001-8708(82)90055-X |
[15] | Mazzeo R (1991) Elliptic theory of differential edge operators I. Commun Part Diff Eq 16: 1615-1664. doi: 10.1080/03605309108820815 |
[16] | Mazzeo R, Vertman B (2014) Elliptic theory of differential edge operators, II: boundary value problems. Indiana U Math J 63: 1911-1955. doi: 10.1512/iumj.2014.63.5435 |
[17] | Noris B, Tavares H, Terracini S, et al. (2010) Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun Pure Appl Math 63: 267-302. doi: 10.1002/cpa.20309 |
[18] | Pacard F, Wei J (2013) Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones. J Funct Anal 264: 1131-1167. doi: 10.1016/j.jfa.2012.03.010 |
[19] | Shahgholian H, Yeressian K (2017) The obstacle problem with singular coefficients near Dirichlet data. Ann I H Poincaré Anal Non Linéaire 34: 293-334. |
[20] | Simon L (1997) Schauder estimates by scaling. Calc Var Partial Dif 5: 391-407. doi: 10.1007/s005260050072 |
[21] | Sire Y, Terracini S, Vita S (2019) Liouville type theorems and regularity of solutions to degenerate or singular problems part I: even solutions. arXiv:1904.02143. |