Research article Special Issues

Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions

  • Received: 19 March 2020 Accepted: 19 July 2020 Published: 31 July 2020
  • We consider a class of equations in divergence form with a singular/degenerate weight $ -\mathrm{div}(|y|^a A(x, y)\nabla u) = |y|^a f(x, y)+\textrm{div}(|y|^aF(x, y))\; . $ Under suitable regularity assumptions for the matrix $A$, the forcing term $f$ and the field $F$, we prove Hölder continuity of solutions which are odd in $y\in\mathbb{R}$, and possibly of their derivatives. In addition, we show stability of the $C^{0, \alpha}$ and $C^{1, \alpha}$ a priori bounds for approximating problems in the form $ -\mathrm{div}((\varepsilon^2+y^2)^{a/2} A(x, y)\nabla u) = (\varepsilon^2+y^2)^{a/2} f(x, y)+\textrm{div}((\varepsilon^2+y^2)^{a/2}F(x, y)) $ as $\varepsilon\to 0$. Our method is based upon blow-up and appropriate Liouville type theorems.

    Citation: Yannick Sire, Susanna Terracini, Stefano Vita. Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions[J]. Mathematics in Engineering, 2021, 3(1): 1-50. doi: 10.3934/mine.2021005

    Related Papers:

  • We consider a class of equations in divergence form with a singular/degenerate weight $ -\mathrm{div}(|y|^a A(x, y)\nabla u) = |y|^a f(x, y)+\textrm{div}(|y|^aF(x, y))\; . $ Under suitable regularity assumptions for the matrix $A$, the forcing term $f$ and the field $F$, we prove Hölder continuity of solutions which are odd in $y\in\mathbb{R}$, and possibly of their derivatives. In addition, we show stability of the $C^{0, \alpha}$ and $C^{1, \alpha}$ a priori bounds for approximating problems in the form $ -\mathrm{div}((\varepsilon^2+y^2)^{a/2} A(x, y)\nabla u) = (\varepsilon^2+y^2)^{a/2} f(x, y)+\textrm{div}((\varepsilon^2+y^2)^{a/2}F(x, y)) $ as $\varepsilon\to 0$. Our method is based upon blow-up and appropriate Liouville type theorems.


    加载中


    [1] Allen M, Shahgholian H (2019) A new boundary Harnack principle (equations with right hand side). Arch Ration Mech Anal 234: 1413-1444. doi: 10.1007/s00205-019-01415-3
    [2] Bogdan K, Dyda B (2011) The best constant in a fractional Hardy inequality. Math Nachr 284: 629-638. doi: 10.1002/mana.200810109
    [3] Caffarelli L, Fabes E, Mortola S, et al. (1981) Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana U Math J 30: 621-640. doi: 10.1512/iumj.1981.30.30049
    [4] Caffarelli L, Silvestre L (2007) An extension problem related to the fractional Laplacian. Commun Part Diff Eq 32: 1245-1260. doi: 10.1080/03605300600987306
    [5] Caffarelli L, Stinga P (2016) Fractional elliptic equations, Caccioppoli estimates and regularity. Ann I H Poincaré (C) Non Linear Anal 33: 767-807.
    [6] De Silva D, Savin O (2015) A note on higher regularity boundary Harnack inequality. DCDS-A 35: 6155-6163. doi: 10.3934/dcds.2015.35.6155
    [7] Epstein CL, Mazzeo R (2013) Degenerate Diffusion Operators Arising in Population Biology. Princeton: Princeton University Press.
    [8] Fabes E, Kenig C, Serapioni R (1982) The local regularity of solutions of degenerate elliptic equations. Commun Part Diff Eq 7: 77-116. doi: 10.1080/03605308208820218
    [9] Fabes E, Jerison D, Kenig C (1982) The Wiener test for degenerate elliptic equations. Ann I Fourier 32: 151-182.
    [10] Fabes E, Jerison D, Kenig C (1983) Boundary behavior of solutions to degenerate elliptic equations. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I & II, Belmont: Wadsworth, 577-589.
    [11] Gilbarg D, Trudinger NS (1983) Elliptic Partial Differential Equations of Second Order, 2 Eds., Berlin: Springer-Verlag.
    [12] Hajlasz P (1996) Sobolev spaces on an arbitrary metric space. Potential Anal 5: 403-415.
    [13] Jhaveri Y, Neumayer R (2017) Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian. Adv Math 311: 748-795. doi: 10.1016/j.aim.2017.03.006
    [14] Jerison D, Kenig C (1982) Boundary behavior of harmonic functions in nontangentially accessible domains. Adv Math 46: 80-147. doi: 10.1016/0001-8708(82)90055-X
    [15] Mazzeo R (1991) Elliptic theory of differential edge operators I. Commun Part Diff Eq 16: 1615-1664. doi: 10.1080/03605309108820815
    [16] Mazzeo R, Vertman B (2014) Elliptic theory of differential edge operators, II: boundary value problems. Indiana U Math J 63: 1911-1955. doi: 10.1512/iumj.2014.63.5435
    [17] Noris B, Tavares H, Terracini S, et al. (2010) Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun Pure Appl Math 63: 267-302. doi: 10.1002/cpa.20309
    [18] Pacard F, Wei J (2013) Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones. J Funct Anal 264: 1131-1167. doi: 10.1016/j.jfa.2012.03.010
    [19] Shahgholian H, Yeressian K (2017) The obstacle problem with singular coefficients near Dirichlet data. Ann I H Poincaré Anal Non Linéaire 34: 293-334.
    [20] Simon L (1997) Schauder estimates by scaling. Calc Var Partial Dif 5: 391-407. doi: 10.1007/s005260050072
    [21] Sire Y, Terracini S, Vita S (2019) Liouville type theorems and regularity of solutions to degenerate or singular problems part I: even solutions. arXiv:1904.02143.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3561) PDF downloads(346) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog