Research article Special Issues

Allen-Cahn equation for the truncated Laplacian: Unusual phenomena

  • Received: 11 February 2020 Accepted: 04 June 2020 Published: 01 July 2020
  • We study entire viscosity solutions of the Allen-Cahn type equation for the truncated Laplacian that are either one dimensional or radial, in order to shed some light on a possible extension of the Gibbons conjecture in this degenerate elliptic setting.

    Citation: Isabeau Birindelli, Giulio Galise. Allen-Cahn equation for the truncated Laplacian: Unusual phenomena[J]. Mathematics in Engineering, 2020, 2(4): 722-733. doi: 10.3934/mine.2020034

    Related Papers:

  • We study entire viscosity solutions of the Allen-Cahn type equation for the truncated Laplacian that are either one dimensional or radial, in order to shed some light on a possible extension of the Gibbons conjecture in this degenerate elliptic setting.


    加载中


    [1] Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv Math 30: 33-76. doi: 10.1016/0001-8708(78)90130-5
    [2] Ambrosio L, Cabré X (2000) Entire solutions of semilinear elliptic equations in $\mathbb{R}^3$ and a conjecture of De Giorgi. J Am Math Soc 13: 725-739. doi: 10.1090/S0894-0347-00-00345-3
    [3] Barlow MT, Bass RF, Gui C (2000) The Liouville property and a conjecture of De Giorgi. Commun Pure Appl Math 53: 1007-1038. doi: 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO;2-U
    [4] Berestycki H, Caffarelli LA, Nirenberg L (1997) Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun Pure Appl Math 50: 1089-1111. doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6
    [5] Berestycki H, Hamel F, Monneau R (2000) One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math J 103: 375-396. doi: 10.1215/S0012-7094-00-10331-6
    [6] Berestycki H, Hamel F, Nadirashvili N (2005) The speed of propagation for KPP type problems. I: Periodic framework. J Eur Math Soc 7: 173-213.
    [7] Berestycki H, Nirenberg L (1991) On the method of moving planes and the sliding method. Bol Soc Bras Mat 22: 1-37. doi: 10.1007/BF01244896
    [8] Berestycki H, Nirenberg L, Varadhan S (1994) The principle eigenvalue and maximum principle for second order elliptic operators in general domains. Commun Pure Appl Math 47: 47-92. doi: 10.1002/cpa.3160470105
    [9] Birindelli I, Galise G, Ishii H (2018) A family of degenerate elliptic operators: Maximum principle and its consequences. Ann Inst H Poincaré Anal Non Linéaire 35: 417-441.
    [10] Birindelli I, Galise G, Ishii H (2020) Existence through convexity for the truncated Laplacians. DOI:10.1007/s00208-019-01953-x.
    [11] Birindelli I, Galise G, Ishii H (2020) Towards a reversed Faber-Krahn inequality for the truncated Laplacian. Rev Mat Iberoam 3: 723-740.
    [12] Birindelli I, Galise G, Ishii H (2020) Positivity sets of supersolutions of degenerate elliptic equations and the strong maximum principle. arXiv:1911.08204.
    [13] Birindelli I, Galise G, Leoni F (2017) Liouville theorems for a family of very degenerate elliptic nonlinear operators. Nonlinear Anal 161: 198-211. doi: 10.1016/j.na.2017.06.002
    [14] Birindelli I, Lanconelli E (2003) A negative answer to a one-dimensional symmetry problem in the Heisenberg group. Calc Var Part Dif 18: 357-372. doi: 10.1007/s00526-003-0194-0
    [15] Birindelli I, Mazzeo R (2009) Symmetry for solutions of two-phase semilinear elliptic equations on hyperbolic space. Indiana Univ Math J 58: 2347-2368. doi: 10.1512/iumj.2009.58.3714
    [16] Birindelli I, Prajapat J (2002) Monotonicity and symmetry results for degenerate elliptic equations on nilpotent Lie groups. Pacific J Math 201: 1-17.
    [17] Del Pino M, Kowalczyk M, Wei J (2011) On De Giorgi's conjecture in dimension N ≥ 9. Ann Math 174: 1485-1569. doi: 10.4007/annals.2011.174.3.3
    [18] Farina A (1999) Symmetry for solutions of semilinear elliptic equations in $\mathbb{R}^N$ and related conjectures. Ricerche Mat 48: 129-154.
    [19] Farina A (2003) Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of $\mathbb{R}^N$ and in half spaces. Adv Math Sci Appl 13: 65-82.
    [20] Farina A, Valdinoci E (2011) Rigidity results for elliptic PDEs with uniform limits: An abstract framework with applications. Indiana Univ Math J 60: 121-141. doi: 10.1512/iumj.2011.60.4433
    [21] Ghoussoub N, Gui C (1998) On a conjecture of De Giorgi and some related problems. Math Ann 311: 481-491. doi: 10.1007/s002080050196
    [22] Parini E, Rossi J, Salort A (2020) Reverse Faber-Krahn inequality for a truncated laplacian operator. arXiv:2003.12107.
    [23] Polacik P (2017) Propagating terraces in a proof of the Gibbons conjecture and related results. J Fixed Point Theory Appl 19: 113-128. doi: 10.1007/s11784-016-0343-7
    [24] Savin O (2003) Phase transitions: Regularity of flat level sets, PhD Thesis of UT Austin.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2776) PDF downloads(165) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog