Research article Special Issues

Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients

  • Received: 25 February 2020 Accepted: 06 July 2020 Published: 10 July 2020
  • We consider a Kolmogorov-Fokker-Planck operator of the kind: $ \mathcal{L}u = \sum\limits_{i,j = 1}^{q}a_{ij}\left( t\right) \partial_{x_{i}x_{j}} ^{2}u+\sum\limits_{k,j = 1}^{N}b_{jk}x_{k}\partial_{x_{j}}u-\partial_{t}u,\qquad (x,t)\in\mathbb{R}^{N+1} $ where $\left\{ a_{ij}\left(t\right) \right\} _{i, j = 1}^{q}$ is a symmetric uniformly positive matrix on $\mathbb{R}^{q}$, $q\leq N$, of bounded measurable coefficients defined for $t\in\mathbb{R}$ and the matrix $B = \left\{ b_{ij}\right\} _{i, j = 1}^{N}$ satisfies a structural assumption which makes the corresponding operator with constant $a_{ij}$ hypoelliptic. We construct an explicit fundamental solution $\Gamma$ for $\mathcal{L}$, study its properties, show a comparison result between $\Gamma$ and the fundamental solution of some model operators with constant $a_{ij}$, and show the unique solvability of the Cauchy problem for $\mathcal{L}$ under various assumptions on the initial datum.

    Citation: Marco Bramanti, Sergio Polidoro. Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients[J]. Mathematics in Engineering, 2020, 2(4): 734-771. doi: 10.3934/mine.2020035

    Related Papers:

  • We consider a Kolmogorov-Fokker-Planck operator of the kind: $ \mathcal{L}u = \sum\limits_{i,j = 1}^{q}a_{ij}\left( t\right) \partial_{x_{i}x_{j}} ^{2}u+\sum\limits_{k,j = 1}^{N}b_{jk}x_{k}\partial_{x_{j}}u-\partial_{t}u,\qquad (x,t)\in\mathbb{R}^{N+1} $ where $\left\{ a_{ij}\left(t\right) \right\} _{i, j = 1}^{q}$ is a symmetric uniformly positive matrix on $\mathbb{R}^{q}$, $q\leq N$, of bounded measurable coefficients defined for $t\in\mathbb{R}$ and the matrix $B = \left\{ b_{ij}\right\} _{i, j = 1}^{N}$ satisfies a structural assumption which makes the corresponding operator with constant $a_{ij}$ hypoelliptic. We construct an explicit fundamental solution $\Gamma$ for $\mathcal{L}$, study its properties, show a comparison result between $\Gamma$ and the fundamental solution of some model operators with constant $a_{ij}$, and show the unique solvability of the Cauchy problem for $\mathcal{L}$ under various assumptions on the initial datum.


    加载中


    [1] Anceschi F, Polidoro S (2020) A survey on the classical theory for Kolmogorov equation. Le Matematiche 75: 221-258.
    [2] Bramanti M (2014) An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, Cham: Springer.
    [3] Da Prato G (1998) Introduction to Stochastic Differential Equations, 2Eds., Scuola Normale Superiore, Pisa.
    [4] Delarue F, Menozzi S (2010) Density estimates for a random noise propagating through a chain of differential equations. J Funct Anal 259: 1577-1630. doi: 10.1016/j.jfa.2010.05.002
    [5] Di Francesco M, Pascucci S (2005) On a class of degenerate parabolic equations of Kolmogorov type. Appl Math Res Express 2005: 77-116. doi: 10.1155/AMRX.2005.77
    [6] Di Francesco M, Polidoro S (2006) Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv Differential Equ 11: 1261-1320.
    [7] Farkas B, Lorenzi L (2009) On a class of hypoelliptic operators with unbounded coefficients in $\mathbb{R}^N$. Commun Pure Appl Anal 8: 1159-1201. doi: 10.3934/cpaa.2009.8.1159
    [8] Hörmander L (1967) Hypoelliptic second order differential equations. Acta Math 119: 147-171. doi: 10.1007/BF02392081
    [9] Il'in AM (1964) On a class of ultraparabolic equations. Dokl Akad Nauk SSSR 159: 1214-1217.
    [10] Kolmogorov AN (1934) Zur Theorie der Brownschen Bewegung. Ann Math 35: 116-117. doi: 10.2307/1968123
    [11] Kupcov LP (1972) The fundamental solutions of a certain class of elliptic-parabolic second order equations. Differencial'nye Uravnenija 8: 1649-1660.
    [12] Kuptsov LP (1982) Fundamental solutions of some second-order degenerate parabolic equations. Mat Zametki 31: 559-570.
    [13] Lanconelli E, Polidoro S (1994) On a class of hypoelliptic evolution operators. Rend Sem Mat 52: 29-63.
    [14] Lunardi A (1997) Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in $\mathbb{R}^n$. Ann Scuola Norm Sup Pisa 24: 133-164.
    [15] Manfredini M (1997) The Dirichlet problem for a class of ultraparabolic equations. Adv Differential Equ 2: 831-866.
    [16] Pascucci A, Pesce A (2019) On stochastic Langevin and Fokker-Planck equations: the two-dimensional case. arXiv:1910.05301.
    [17] Pascucci A, Pesce A (2020) The parametrix method for parabolic SPDEs. Stochastic Process Appl, To appear.
    [18] Polidoro S (1994) On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type. Matematiche 49: 53-105.
    [19] Sonin IM (1967) A class of degenerate diffusion processes. Trans Theory Probab Appl 12: 490-496. doi: 10.1137/1112059
    [20] Weber M (1951) The fundamental solution of a degenerate partial differential equation of parabolic type. T Am Math Soc 71: 24-37. doi: 10.1090/S0002-9947-1951-0042035-0
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3373) PDF downloads(188) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog