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Abstract: We consider a Kolmogorov-Fokker-Planck operator of the kind:

Lu =

q∑
i, j=1

ai j (t) ∂2
xi x j

u +

N∑
k, j=1

b jkxk∂x ju − ∂tu, (x, t) ∈ RN+1

where
{
ai j (t)

}q

i, j=1
is a symmetric uniformly positive matrix on Rq, q ≤ N, of bounded measurable

coefficients defined for t ∈ R and the matrix B =
{
bi j

}N

i, j=1
satisfies a structural assumption which

makes the corresponding operator with constant ai j hypoelliptic. We construct an explicit fundamental
solution Γ forL, study its properties, show a comparison result between Γ and the fundamental solution
of some model operators with constant ai j, and show the unique solvability of the Cauchy problem for
L under various assumptions on the initial datum.
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1. Introduction

We consider a Kolmogorov-Fokker-Planck (from now on KFP) operator of the kind:

Lu =

q∑
i, j=1

ai j (t) ∂2
xi x j

u +

N∑
k, j=1

b jkxk∂x ju − ∂tu, (x, t) ∈ RN+1 (1.1)

where:
(H1) A0 (t) =

{
ai j (t)

}q

i, j=1
is a symmetric uniformly positive matrix on Rq, q ≤ N, of bounded

measurable coefficients defined for t ∈ R, so that

ν |ξ|2 ≤

q∑
i, j=1

ai j (t) ξiξ j ≤ ν
−1 |ξ|2 (1.2)

for some constant ν > 0, every ξ ∈ Rq, a.e. t ∈ R.
Lanconelli-Polidoro in [13] have studied the operators (1.1) with constant ai j, proving that they are

hypoelliptic if and only if the matrix B =
{
bi j

}N

i, j=1
satisfies the following condition. There exists a basis

of RN such that B assumes the following form:
(H2) For m0 = q and suitable positive integers m1, . . . ,mκ such that

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1, and m0 + m1 + . . . + mκ = N, (1.3)

we have

B =



∗ ∗ . . . ∗ ∗

B1 ∗ . . . ∗ ∗

O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗


(1.4)

where every block B j is a m j × m j−1 matrix of rank m j with j = 1, 2, . . . , κ, while the entries of the
blocks denoted by ∗ are arbitrary.

It is also proved in [13] that the operator L (corresponding to constant ai j) is left invariant with
respect to a suitable (noncommutative) Lie group of translations in RN . If, in addition, all the blocks ∗
in (1.4) vanish, then L is also 2-homogeneous with respect to a family of dilations. In this very special
case, the operator L fits into the rich theory of left invariant, 2-homogeneus, Hörmander operators on
homoegeneous groups.

Coming back to the family of hypoelliptic and left invariant operators with constant ai j (and possibly
nonzero blocks ∗ in (1.4)), an explicit fundamental solution is known, after [11] and [13].

A first result of this paper consists in showing that if, under the same structural assumptions
considered in [13], the coefficients ai j are allowed to depend on t, even just in an L∞-way, then an
explicit fundamental solution Γ can still be costructed. It is worth noting that, under our assumptions
(H1)–(H2), L is hypoelliptic if and only if the coefficients ai, j’s are C∞ functions, which also means
that Γ is smooth outside the pole. In our more general context, Γ will be smooth in x and only locally
Lipschitz continuous in t, outside the pole. Our fundamental solution also allows to solve a Cauchy
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problem for L under various assumptions on the initial datum, and to prove its uniqueness. Moreover,
we show that the fundamental solution of L satisfies two-sided bounds in terms of the fundamental
solutions of model operators of the kind:

Lαu = α

q∑
i=1

∂2
xi xi

u +

N∑
k, j=1

b jkxk∂x ju − ∂tu, (1.5)

whose explicit expression is more easily handled. This fact has other interesting consequences when
combined with the results of [13], which allow to compare the fundamental solution of (1.5) with that
of the corresponding “principal part operator”, which is obtained from (1.5) by annihilating all the
blocks ∗ in (1.4). The fundamental solution of the latter operator has an even simpler explicit form,
since it possesses both translation invariance and homogeneity.

To put our results into context, let us now make some historical remarks. Already in 1934,
Kolmogorov in [10] exhibited an explicit fundamental solution, smooth outside the pole, for the
ultraparabolic operator

∂2
xx + x∂y − ∂t in R3.

For more general classes of ultraparabolic KFP operators, Weber [20], 1951, Il’in [9], 1964,
Sonin [19], 1967, proved the existence of a fundamental solution smooth outside the pole, by the Levi
method, starting with an approximate fundamental solution which was inspired by the one found by
Kolmogorov. Hörmander, in the introduction of [8], 1967, sketches a procedure to compute explicitly
(by Fourier transform and the method of characteristics) a fundamental solution for a class of KFP
operators of type (1.1) (with constant ai j). In all the aforementioned papers the focus is to prove that
the operator, despite of its degenerate character, is hypoelliptic. This is accomplished by showing the
existence of a fundamental solution smooth outside the pole, without explicitly computing it.

Kupcov in [11], 1972, computes the fundamental solution for a class of KFP operators of the kind
(1.1) (with constant ai j). This procedure is generalized by the same author in [12], 1982, to a class of
operators (1.1) with time-dependent coefficients ai j, which however are assumed of class Cκ for some
positive integer κ related to the structure of the matrix B. Our procedure to compute the fundamental
solution follows the technique by Hörmander (different from that of Kupcov) and works also for
nonsmooth ai j (t).

Based on the explicit expression of the fundamental solution, existence, uniqueness and regularity
issues for the Cauchy problem have been studied in the framework of the semigroup setting. We refer
here to the article by Lunardi [14], and to Farkas and Lorenzi [7]. The parametrix method introduced
in [9, 19, 20] was used by Polidoro in [18] and by Di Francesco and Pascucci in [5] for more general
families of Kolmogorov equations with Hölder continuous coefficients. We also refer to the article [4]
by Delaure and Menozzi, where a Lipschitz continuous drift term is considered in the framework of
the stochastic theory. For a recent survey on the theory of KFP operators we refer to the paper [1] by
Anceschi-Polidoro, while a discussion on several motivations to study this class of operators can be
found for instance in the survey book [2, §2.1].

The interest in studying KFP operators with a possibly rough time-dependence of the coefficients
comes from the theory of stochastic processes. Indeed, let σ = σ(t) be a N×q matrix, with zero entries
under the q-th row, let B as in (1.4), and let (Wt)t≥t0 be a q-dimensional Wiener process. Denote by
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(Xt)t≥t0 the solution to the following N-dimensional stochastic differential equationdXt = −BXt dt + σ(t) dWt

Xt0 = x0.
(1.6)

Then the forward Kolmogorov operator K f of (Xt)t≥t0 agrees with L up to a constant zero order term:

K f v(x, t) = Lv(x, t) + tr(B)v(x, t),

where

ai j (t) = 1
2

q∑
k=1

σik(t)σ jk(t) i, j = 1, ..., q. (1.7)

Moreover, the backward Kolmogorov operator Kb of (Xt)t≥t0 acts as follows

Kbu(y, s) = ∂su(y, s) +

q∑
i, j=1

ai j(s)∂2
yiy j

u(y, s) −
N∑

i, j=1

bi jy j∂yiu(y, s).

Note thatK f is the transposed operator ofKb. In general, given a differential operatorK , its transposed
operator K ∗ is the one which satisfies the relation∫

RN+1
φ (x, t)K ∗ψ (x, t) dxdt =

∫
RN+1
Kφ (x, t)ψ (x, t) dxdt

for every φ, ψ ∈ C∞0
(
RN+1

)
.

A further motivation for our study is the following one. A regularity theory for the operator L with
Hölder continuous coefficients has been developed by several authors (see e.g., [6, 14, 15]). However,
as Pascucci and Pesce show in the Example 1.3 of [16], the requirement of Hölder continuity in (x, t)
with respect to the control distance may be very restrictive, due to the interaction of time and space
variable in the drift term of L. In view of this, a regularity requirement with respect to x-variables
alone, for t fixed, with a possible rough dependence on t, seems a more natural assumption. This paper
can be seen as a first step to study KFP operators with coefficients measurable in time and Hölder
continuous or VMO in space, to overcome the objection pointed out in [16]. For these operators the
fundamental solution of (1.1) could be used as a parametrix, as done in [17], to build a fundamental
solution.

Notation 1.1. Throughout the paper we will regard vectors x ∈ RN as columns, and, we will write
xT ,MT to denote the transpose of a vector x or a matrix M. We also define the (symmetric, nonnegative)
N × N matrix

A (t) =

[
A0 (t) O
O O

]
. (1.8)

Before stating our results, let us fix precise definitions of solution to the equation Lu = 0 and to a
Cauchy problem for L.

Definition 1.2. We say that u (x, t) is a solution to the equationLu = 0 in RN×I, for some open interval
I, if:
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u is jointly continuous in RN × I;
for every t ∈ I, u (·, t) ∈ C2

(
RN

)
;

for every x ∈ RN , u (x, ·) is absolutely continuous on I, and ∂u
∂t (defined for a.e. t) is essentially

bounded for t ranging in every compact subinterval of I;
for a.e. t ∈ I and every x ∈ RN , Lu (x, t) = 0.

Definition 1.3. We say that u (x, t) is a solution to the Cauchy problem{
Lu = 0 in RN × (t0,T )
u (·, t0) = f

(1.9)

for some T ∈ (−∞,+∞], t0 ∈ (−∞,T ), where f is continuous in RN or belongs to Lp
(
RN

)
for some

p ∈ [1,∞) if:
(a) u is a solution to the equation Lu = 0 in RN × (t0,T ) (in the sense of the above definition);
(b1) if f ∈ C0

(
RN

)
then u (x, t)→ f (x0) as (x, t)→

(
x0, t+

0

)
, for every x0 ∈ R

N;

(b2) if f ∈ Lp
(
RN

)
for some p ∈ [1,∞) then u (·, t) ∈ Lp

(
RN

)
for every t ∈ (t0,T ), and

‖u (·, t) − f ‖Lp(RN) → 0 as t → t+
0 .

In the following, we will also need the transposed operator of L, defined by

L∗u =

q∑
i, j=1

ai j (s) ∂2
yiy j

u −
N∑

k, j=1

b jkyk∂y ju − u Tr B + ∂su. (1.10)

The definition of solution to the equation L∗u = 0 is perfectly analogous to Definition 1.2.
We can now state precisely the main results of the paper.

Theorem 1.4. Under the assumptions (H1)–(H2) above, denote by E(s) and C(t, t0) the following N×N
matrices

E (s) = exp (−sB) , C (t, t0) =

∫ t

t0
E (t − σ) A (σ) E (t − σ)T dσ (1.11)

for s, t, t0 ∈ R and t > t0. Then the matrix C (t, t0) is symmetric and positive for every t > t0. Let

Γ (x, t; x0, t0) =
1

(4π)N/2 √det C (t, t0)
e−(

1
4 (x−E(t−t0)x0)T C(t,t0)−1(x−E(t−t0)x0)+(t−t0) Tr B) (1.12)

for t > t0, Γ = 0 for t ≤ t0. Then Γ has the following properties (so that Γ is a fundamental solution for
L with pole (x0, t0)).

(i) In the region
R2N+2
∗ =

{
(x, t, x0, t0) ∈ R2N+2 : (x, t) , (x0, t0)

}
(1.13)

the function Γ is jointly continuous in (x, t, x0, t0) and is C∞ with respect to x, x0. The functions ∂α+βΓ

∂xα∂xβ0

(for every multiindices α, β) are jointly continuous in (x, t, x0, t0) ∈ R2N+2
∗ . Moreover Γ and and ∂α+βΓ

∂xα∂xβ0
are Lipschitz continuous with respect to t and with respect to t0 in any region H ≤ t0 + δ ≤ t ≤ K for
fixed H,K ∈ R and δ > 0.

lim|x|→+∞ Γ (x, t; x0, t0) = 0 for every t > t0 and every x0 ∈ R
N .
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lim|x0 |→+∞ Γ (x, t; x0, t0) = 0 for every t > t0 and every x ∈ RN .
(ii) For every fixed (x0, t0) ∈ RN+1, the function Γ (·, ·; x0, t0) is a solution to Lu = 0 in RN × (t0,+∞)

(in the sense of Definition 1.2);
(iii) For every fixed (x, t) ∈ RN+1, the function Γ (x, t; ·, ·) is a solution to L∗u = 0 in RN × (−∞, t);
(iv) Let f ∈ C0

b

(
RN

)
(bounded continuous), or f ∈ Lp

(
RN

)
for some p ∈ [1,∞). Then there exists

one and only one solution to the Cauchy problem (1.9) (in the sense of Definition 1.3, with T = ∞)
such that u ∈ C0

b

(
RN × [t0,∞)

)
or u (t, ·) ∈ Lp

(
RN

)
for every t > t0, respectively. The solution is given

by

u (x, t) =

∫
RN

Γ (x, t; y, t0) f (y) dy (1.14)

and is C∞
(
RN

)
with respect to x for every fixed t > t0. If moreover f is continuous and vanishes at

infinity, then u (·, t)→ f uniformly in RN as t → t+
0 .

(v) Let f be a (possibly unbounded) continuous function on RN satisfying the condition∫
RN
| f (x)| e−α|x|

2
dx < ∞, (1.15)

for some α > 0. Then there exists T > 0 such that there exists one and only one solution u to the
Cauchy problem (1.9) satisfying condition

T∫
t0

∫
RN

|u(x, t)| e−C|x|2 dx dt < +∞ (1.16)

for some C > 0. The solution u (x, t) is given by (1.14) for t ∈ (t0,T ). It is C∞
(
RN

)
with respect to x for

every fixed t ∈ (t0,T ).
(vi) Γ satisfies for every x0 ∈ R

N , t0 < t the integral identities∫
RN

Γ (x0, t; y, t0) dy = 1∫
RN

Γ (x, t; x0, t0) dx = e−(t−t0) Tr B.

(vii) Γ satisfies the reproduction formula

Γ (x, t; y, s) =

∫
RN

Γ (x, t; z, τ) Γ (z, τ; y, s) dz

for every x, y ∈ RN and s < τ < t.

Remark 1.5. Our uniqueness results only require the condition (1.16). Indeed, as we will prove in
Proposition 4.14 all the solutions to the Cauchy problem (1.9), in the sense of Definition 1.3, with
f ∈ Lp

(
RN

)
for some p ∈ [1,∞), f ∈ C0

b

(
RN

)
or f ∈ C0

(
RN

)
with f satisfying (1.15), do satisfy the

condition (1.16).

Remark 1.6. All the statements in the above theorem still hold if the coefficients ai j (t) are defined
only for t belonging to some interval I. In this case the above formulas need to be considered only for
t, t0 ∈ I. In order to simplify notation, throughout the paper we will only consider the case I = R.
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The above theorem will be proved in section 4.
The second main result of this paper is a comparison between Γ and the fundamental solutions Γα

of the model operators (1.5) corresponding to α = ν, α = ν−1 (with ν as in (1.2)). Specializing (1.12) to
the operators (1.5) we have

Γα (x, t; x0, t0) = Γα (x − E (t − t0) x0, t − t0; 0, 0)

with
Γα (x, t; 0, 0) =

1
(4πα)N/2 √det C0 (t)

e−(
1

4α xT C0(t)−1 x+t Tr B) (1.17)

where, here and in the following, C0 (t) = C (t, 0) with A0 (t) = Iq (identity q × q matrix). Explicitly:

C0 (t) =

∫ t

0
E (t − σ) Iq,N E (t − σ)T dσ, (1.18)

where Iq,N is the N × N matrix given by

Iq,N =

[
Iq 0
0 0

]
.

Then:

Theorem 1.7. For every t > t0 and x, x0 ∈ R
N we have

νNΓν (x, t; x0, t0) ≤ Γ (x, t; x0, t0) ≤
1
νN Γν−1 (x, t; x0, t0) . (1.19)

The above theorem will be proved in section 3. The following example illustrates the reason why
our comparison result is useful.

Example 1.8. Let us consider the operator

Lu = a (t) ux1 x1 + x1ux2 − ut

with x ∈ R2, a (t) measurable and satisfying

0 < ν ≤ a (t) ≤ ν−1 for every t ∈ R.

Let us compute Γ (x, t; 0, 0) in this case. We have:

A =

[
a (t) 0

0 0

]
; B =

[
0 0
1 0

]
; E (s) =

[
1 0
−s 1

]
;

C (t) ≡ C (t, 0) =

∫ t

0

[
1 0
−s 1

] [
a (t − s) 0

0 0

] [
1 −s
0 1

]
ds =

∫ t

0
a (t − s)

[
1 −s
−s s2

]
ds

(after two integrations by parts)

=

[
a∗ (t) −a∗∗ (t)
−a∗∗ (t) 2a∗∗∗ (t)

]
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where we have set:

a∗ (t) =

∫ t

0
a (s) ds; a∗∗ (t) =

∫ t

0
a∗ (s) ds; a∗∗∗ (t) =

∫ t

0
a∗∗ (s) ds.

Therefore we find, for t > 0:

Γ (x, t; 0, 0) =
1

4π
√

det C (t)
e−(

1
4 xT C(t)−1 x)

with

C (t)−1 =
1

det C (t)

[
2a∗∗∗ (t) a∗∗ (t)
a∗∗ (t) a∗ (t)

]
so that, explicitly, we have

Γ (x, t; 0, 0) =
1

4π
√

det C (t)
exp

−
(
2a∗∗∗ (t) x2

1 + 2a∗∗ (t) x1x2 + a∗ (t) x2
2

)
4 det C (t)


with det C (t) = 2a∗ (t) a∗∗∗ (t) − a∗∗ (t)2 .

On the other hand, when considering the model operator

Lαu = αux1 x1 + x1ux2 − ut

with constant α > 0, we have

Γα (x, t; 0, 0) =

√
3

2παt2 exp
(
−

1
α

(
x2

1

t
+

3x1x2

t2 +
3x2

2

t3

))
.

The comparison result of Theorem 1.7 then reads as follows:

ν2Γν (x, t; 0, 0) ≤ Γ (x, t; 0, 0) ≤
1
ν2 Γν−1 (x, t; 0, 0)

or, explicitly,

ν

√
3

2πt2 exp
(
−

1
ν

(
x2

1

t
+

3x1x2

t2 +
3x2

2

t3

))
≤ Γ (x, t; 0, 0) ≤

1
ν

√
3

2πt2 exp
(
−ν

(
x2

1

t
+

3x1x2

t2 +
3x2

2

t3

))
.

Plan of the paper. In §2 we compute the explicit expression of the fundamental solution Γ of
L by using the Fourier transform and the method of characteristics, showing how one arrives to the
the explicit formula (1.12). This procedure is somehow formal as, due to the nonsmoothness of the
coefficients ai j (t), we cannot plainly assume that the functional setting where the construction is done
is the usual distributional one. Since all the properties of Γ which qualify it as a fundamental solution
will be proved in the subsequent sections, on a purely logical basis one could say that §2 is superfluous.
Nevertheless, we prefer to present this complete computation to show how this formula has been built.
A further reason to do this is the following one. The unique article where the analogous computation in
the constant coefficient case is written in detail seems to be [11], and it is written in Russian language.

In §3 we prove Theorem 1.7, comparing Γ with the fundamental solutions of two model operators,
which is easier to write explicitly and to study. In §4 we will prove Theorem 1.4, namely: point (i) in
§4.1; points (ii), (iii), (vi) in §4.2; points (iv), (v), (vii) in §4.3.
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2. Computation of the fundamental solution Γ

As explained at the end of the introduction, this section contains a formal computation of the
fundamental solution Γ. To this aim, we choose any (x0, t0) ∈ RN+1, and we look for a solution to the
Cauchy Problem  Lu = 0 for x ∈ RN , t > t0

u (·, t0) = δx0 inD′
(
RN

) (2.1)

by applying the Fourier transform with respect to x, and using the notation

û (ξ, t) = F (u (·, t)) (ξ) :=
∫
RN

e−2πixT ξu(x, t)dx.

We have:
q∑

i, j=1

ai j (t)
(
−4π2ξiξ j

)
û +

N∑
k, j=1

b jkF
(
xk∂x ju

)
− ∂t̂u = 0.

By the standard properties of the Fourier transform, it follows that

F
(
xk∂x ju

)
=

1
−2πi

∂ξk

(
F

(
∂x ju

))
=

1
−2πi

∂ξk

(
2πiξ ĵu

)
= −

(
δ jkû + ξ j∂ξk û

)
.

then the problem (2.1) is equivalent to the following Cauchy problem that we write in compact form
(recalling the definition of the A (t) given in (1.8)) as

(
∇ξû(ξ, t)

)T
BTξ + ∂t̂u(ξ, t) = −

(
4π2ξT A (t) ξ + Tr B

)
û(ξ, t),

û (ξ, t0) = e−2πiξT x0 .

(2.2)

Now we solve the problem (2.2) by the method of characteristics. Fix any initial condition η ∈ RN , and
consider the system of ODEs:

dξ
ds (s) = BTξ(s), ξ (0) = η,

dt
ds (s) = 1, t (0) = t0,

dz
ds (s) = −

(
4π2ξT (s)A (t(s)) ξ(s) + Tr B

)
z(s), z (0) = e−2πiηT x0 .

(2.3)

We plainly find t(s) = t0 + s and ξ(s) = exp
(
sBT

)
η, so that the last equation becomes

dz
ds

(s) = −

(
4π2

(
exp

(
sBT

)
η
)T

A (t0 + s) exp
(
sBT

)
η + Tr B

)
z (s) ,

whose solution, with initial condition z (0) = e−2πiηT x0 , is

z (s) = exp
(
−4π2

∫ s

0
ηT

[
exp (σB) A (t0 + σ) exp

(
σBT

)]
ηdσ − s Tr B − 2πiηT x0

)
.
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Hence, substituting s = t − t0, η = exp
(
(t0 − t) BT

)
ξ, recalling the notation introduced in (1.11), we

find

û (ξ, t) = z(t − t0)

= exp
(
−4π2

∫ t−t0

0
ξT exp ((t0 − t + σ) B) A (t0 + σ) exp

(
(t0 − t + σ) BT

)
ξdσ

− (t − t0) Tr B − 2πiξT exp ((t0 − t) B) x0

)

= exp
(
−4π2ξT

(∫ t

t0
E (σ − t) A (σ) E (σ − t)T dσ

)
ξ

−(t − t0) Tr B − 2πiξT E (t − t0) x0

)
= exp

(
−4π2ξTC (t, t0) ξ − (t − t0) Tr B − 2πiξT E (t − t0) x0

)
. (2.4)

Let

G (ξ, t; x0, t0) = exp
(
−4π2ξTC (t, t0) ξ − (t − t0) Tr B − 2πiξT E (t − t0) x0

)
G0 (ξ, t, t0) = exp

(
−4π2ξTC (t, t0) ξ

)
(2.5)

and note that if
F (k (·, t, t0)) (ξ) = G0 (ξ, t, t0)

then
F

(
k (· − E (t − t0) x0, t, t0) exp (− (t − t0) Tr B)

)
(ξ) = G (ξ, t; x0, t0) , (2.6)

hence it is enough to compute the antitransform of G0 (ξ, t, t0). In order to do that, the following will
be useful:

Proposition 2.1. Let A be an N × N real symmetric positive constant matrix. Then:

F
(
e−(xT Ax)) (ξ) =

(
πN

det A

)1/2

e−π
2ξT A−1ξ.

The above formula is a standard known result in probability theory, being the characteristic function
of a multivariate normal distribution (see for instance [3, Prop. 1.1.2]).

To apply the previous proposition, and antitransform the function G0 (ξ, t, t0), we still need to know
that the matrix C (t, t0) is strictly positive. By [13] we know that the matrix C0 (t) (see (1.18)) is positive,
under the structure conditions on B expressed in (1.4). Exploiting this fact, let us show that the same
is true for our C (t, t0):

Proposition 2.2. For every ξ ∈ RN and every t > t0 we have

ν−1ξTC0 (t − t0) ξ ≥ ξTC (t, t0) ξ ≥ νξTC0 (t − t0) ξ. (2.7)

In particular, the matrix C (t, t0) is positive for t > t0.
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Proof.

ξTC (t, t0) ξ =

∫ t

t0
ξT E (t − s) A (s) E (t − s)T ξds.

Next, letting E (s) =
(
ei j (s)

)N

i, j=1
and ηh (s) =

∑N
k=1 ξkekh (s) we have

ξT E (t − s) A (s) E (t − s)T ξ =

N∑
i, j,h,k=1

ξiei j (t − s) a jh (s) ekh (t − s) ξk

=

q∑
j,h=1

a jh (s) η j (t − s) ηh (t − s) ≥ ν
q∑

j=1

η j (t − s)2 = νξT E (t − s) Iq,N E (t − s)T ξ

where

Iq,N =

[
Iq 0
0 0

]
.

Integrating for s ∈ (t0, t) the previous inequality we get

ξTC (t, t0) ξ ≥ νξT
∫ t

t0
E (t − s) Iq,N E (t − s)T dsξ = νξTC0 (t − t0) ξ.

Analogously we get the other bound. �

By the previous proposition, the matrix C (t, t0) is positive definite for every t > t0, since, under our
assumptions, this is true for C0 (t − t0). Therefore we can invert C (t, t0) and antitransform the function
G0 (ξ, t, t0) in (2.5). Namely, applying Proposition 2.1 to C (t, t0)−1 we get:

F
(
e−(xT C(t,t0)−1 x)) (ξ) = πN/2

√
det C (t, t0)e−π

2ξT C(t,t0)ξ

F

(
1

(4π)N/2 √det C (t, t0)
e−

(
1
4 xTC(t,t0)−1 x

))
(ξ) = e−4π2ξT C(t,t0)ξ.

Hence we have computed the antitransform of G0 (ξ, t, t0), and by (2.6) this also implies

F

(
1

(4π)N/2 √det C (t, t0)
e−(

1
4 (x−E(t−t0)x0)T C(t,t0)−1(x−E(t−t0)x0)+(t−t0) Tr B)

)
(ξ)

= exp
(
−4π2ξTC (t, t0) ξ − (t − t0) Tr B − 2πiξT E (t − t0) x0

)
.

Hence the (so far, “formal”) fundamental solution of L is

Γ (x, t; x0, t0) =
1

(4π)N/2 √det C (t, t0)
e−(

1
4 (x−E(t−t0)x0)T C(t,t0)−1(x−E(t−t0)x0)+(t−t0) Tr B),

which is the expression given in Theorem 1.4.
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3. Comparison between Γ and fundamental solutions of model operators

In this section we will prove Theorem 1.7. The first step is to derive from Proposition 2.2 an
analogous control between the quadratic forms associated to the inverse matrices
C0 (t − t0)−1 ,C (t, t0)−1. The following algebraic fact will help:

Proposition 3.1. Let C1,C2 be two real symmetric positive N × N matrices. If

ξTC1ξ ≤ ξ
TC2ξ for every ξ ∈ RN (3.1)

then
ξTC−1

2 ξ ≤ ξTC−1
1 ξ for every ξ ∈ RN

and
det C1 ≤ det C2.

The first implication is already proved in [18, Remark 2.1.]. For convenience of the reader, we write
a proof of both.

Proof. Let us fix some shorthand notation. Whenever (3.1) holds for two symmetric positive matrices,
we will write C1 ≤ C2. Note that for every symmetric N × N matrix G,

C1 ≤ C2 =⇒ GC1G ≤ GC2G. (3.2)

For any symmetric positive matrix C, we can rewrite C = MT ∆M with M orthogonal and
∆ = diag (λ1, ..., λn). Letting C1/2 = MT ∆1/2M, one can check that C1/2 is still symmetric positive, and
C1/2C1/2 = I. Moreover, writing C−1/2 =

(
C−1

)1/2
we have

C−1/2 = MT ∆−1/2M, C−1/2CC−1/2 = I.

Then, applying (3.2) with G = C−1/2
1 we get

I = C−1/2
1 C1C

−1/2
1 ≤ C−1/2

1 C2C
−1/2
1 .

Next, applying (3.2) to the last inequality with G =
(
C−1/2

1 C2C
−1/2
1

)−1/2
we get

C1/2
1 C−1

2 C1/2
1 =

(
C−1/2

1 C2C
−1/2
1

)−1
=

(
C−1/2

1 C2C
−1/2
1

)−1/2 (
C−1/2

1 C2C
−1/2
1

)−1/2

≤
(
C−1/2

1 C2C
−1/2
1

)−1/2 (
C−1/2

1 C2C
−1/2
1

) (
C−1/2

1 C2C
−1/2
1

)−1/2
= I.

Finally, applying (3.2) to the last inequality with G = C−1/2
1 we get

C−1
2 = C−1/2

1

(
C1/2

1 C−1
2 C1/2

1

)
C−1/2

1 ≤ C−1/2
1 C−1/2

1 = C−1
1

so the first statement is proved. To show the inequality on determinants, we can write, since C1 ≤ C2,

C−1/2
2 C1C

−1/2
2 ≤ I.
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Letting M be an orthogonal matrix that diagonalizes C−1/2
2 C1C

−1/2
2 we get

diag (λ1, ..., λn) = MTC−1/2
2 C1C

−1/2
2 M ≤ I

which implies 0 < λi ≤ 1 for i = 1, 2, ..., n hence also

1 ≥
n∏

i=1
λi = det

(
MTC−1/2

2 C1C
−1/2
2 M

)
=

det C1

det C2
,

so we are done. �

Applying Propositions 3.1 and 2.2 we immediately get the following:

Proposition 3.2. For every ξ ∈ RN and every t > t0 we have

ν−1ξTC0 (t − t0)−1 ξ ≥ ξTC (t, t0)−1 ξ ≥ νξTC0 (t − t0)−1 ξ (3.3)

ν−N det C0 (t − t0) ≥ det C (t, t0) ≥ νN det C0 (t − t0) (3.4)

for every t > t0.

We are now in position to give the

Proof of Thm. 1.7. Recall that C0 (t) is defined in (1.18). From the definition of the matrix C (t, t0) one
immediately reads that, letting Cν (t, t0) be the matrix corresponding to the operator Lν, one has

Cν (t, t0) = νC0 (t − t0) (3.5)

hence also
det (Cν (t, t0)) = νN det C0 (t − t0) . (3.6)

From the explicit form of Γ given in (1.12) we read that whenever the matrix A (t) is constant one has

Γ (x, t; x0, t0) = Γ (x − E (t − t0) x0, t − t0; 0, 0) ,

in particular this relation holds for Γν. Then (1.12), (3.5), (3.6) imply (1.17). Therefore (3.3) and (3.4)
give:

Γ (x, t; x0, t0) =
e−(

1
4 (x−E(t−t0)x0)T C(t,t0)−1(x−E(t−t0)x0)+(t−t0) Tr B)

(4π)N/2 √det C (t, t0)

≤
e−(

ν
4 (x−E(t−t0)x0)T C0(t−t0)−1(x−E(t−t0)x0)+(t−t0) Tr B)

(4π)N/2
√
νN det C0 (t − t0)

=
1
νN Γν−1 (x, t; x0, t0) .

Analogously,

Γ (x, t; x0, t0) ≥
νN/2e−(

1
4ν (x−E(t−t0)x0)T C0(t−t0)−1(x−E(t−t0)x0)+(t−t0) Tr B)

(4π)N/2 √det C0 (t − t0)
= νNΓν (x, t; x0, t0)

so we have (1.19). �
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As anticipated in the introduction, the above comparison result has further useful consequences
when combined with some results of [13], where Γα is compared with the fundamental solution of the
“principal part operator” L̃α having the same matrix A = αIq,N and a simpler matrix B, actually the
matrix obtained from (1.4) annihilating all the ∗ blocks. This operator L̃α is also 2-homogeneous with
respect to dilations and its matrix C0 (t) (which in the next statement is called C∗0 (t)) has a simpler
form, which gives a useful asymptotic estimate for the matrix of Lα. Namely, the following holds:

Proposition 3.3 (Short-time asymptotics of the matrix C0 (t)). (See [13, (3.14), (3.9), (2.17)]) There
exist integers 1 = σ1 ≤ σ2 ≤ ... ≤ σN = 2κ + 1 (with κ as in (1.4)), a constant invertible N × N matrix
C∗0 (1) and a N × N diagonal matrix

D0 (λ) = diag (λσ1 , λσ2 , ..., λσN )

such that the following holds. If we let

C∗0 (t) = D0

(
t1/2

)
C∗0 (1) D0

(
t1/2

)
,

so that
det C∗0 (t) = cNtQ

where Q =
∑N

i=1 σi, then:

det C0 (t) = det C∗0 (t) (1 + tO (1)) as t → 0+

xTC0 (t)−1 x = xTC∗0 (t)−1 x (1 + tO (1)) as t → 0+

where in the second equality O (1) stands for a bounded function on RN × (0, 1].

The above result allows to prove the following more explicit upper bound on Γ for short times:

Proposition 3.4. There exist constants c, δ ∈ (0, 1) such that for 0 < t0 − t ≤ δ and every x, x0 ∈ R
N we

have:

Γ (x, t; x0, t0) ≤
1

c (t − t0)Q/2 e−c |x−E(t−t0)x0 |
2

t−t0 . (3.7)

Proof. By (1.19) and the properties of the fundamental solution when the matrix A (t) is constant, we
can write:

Γ (x, t; x0, t0) ≤ ν−NΓν−1 (x − E (t − t0) x0, t − t0; 0, 0) . (3.8)

On the other hand,

Γα (y, t; 0, 0) =
1

(4πα)N/2 √det C0 (t)
e−(

1
4α yT C0(t)−1y+t Tr B)

and by Proposition 3.3 there exist c, δ ∈ (0, 1) such that for 0 < t ≤ δ and every y ∈ RN

det C0 (t) = det C∗0 (t) (1 + tO (1)) ≥ c det C∗0 (t) = c1tQ

yTC0 (t)−1 y = yTC∗0 (t)−1 y (1 + tO (1)) ≥ c yTC∗0 (t)−1 y
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≥ c
∣∣∣∣D0

(
t−1/2

)
y
∣∣∣∣2 = c

N∑
i=1

y2
i

tσi
≥ c
|y|2

t
.

Hence

Γ (x, t; x0, t0) ≤
1

(4πν)N/2 (t − t0)Q/2 e
ν
4 |Tr B|e−νc

|x−E(t−t0)x0 |
2

t−t0 =
1

c2 (t − t0)Q/2 e−c2
|x−E(t−t0)x0 |

2

t−t0 .

�

4. Properties of the fundamental solution and Cauchy problem

4.1. Regularity properties of Γ and asymptotics

In this section we will prove point (i) of Theorem 1.4.
With reference to the explicit form of Γ in (1.12), we start noting that the elements of the matrix

E (t − σ) A (σ) E (t − σ)T

are measurable and uniformly essentially bounded for (t, σ, t0) varying in any region H ≤ t0 ≤ σ ≤ t ≤
K for fixed H,K ∈ R. This implies that the matrix

C (t, t0) =

∫ t

t0
E (t − σ) A (σ) E (t − σ)T dσ

is Lipschitz continuous with respect to t and with respect to t0 in any region H ≤ t0 ≤ t ≤ K for
fixed H,K ∈ R. Moreover, C (t, t0) and det C (t, t0) are jointly continuous in (t, t0). Recalling that, by
Proposition 2.2, the matrix C (t, t0) is positive definite for any t > t0, we also have that C (t, t0)−1 is
Lipschitz continuous with respect to t and with respect to t0 in any region H ≤ t0 + δ ≤ t ≤ K for fixed
H,K ∈ R and δ > 0, and is jointly continuous in (t, t0) for t > t0.

From the explicit form of Γ and the previous remarks we conclude that Γ (x, t; x0, t0) is jointly
continuous in (x, t; x0, t0) for t > t0, smooth w.r.t. x and x0 for t > t0 and Lipschitz continuous with
respect to t and with respect to t0 in any region H ≤ t0 + δ ≤ t ≤ K for fixed H,K ∈ R and δ > 0.

Moreover, every derivative ∂α+βΓ
∂xα∂βx0

is given by Γ times a polynomial in (x, x0) with coefficients
Lipschitz continuous with respect to t and with respect to t0 in any region H ≤ t0 + ε ≤ t ≤ K for fixed
H,K ∈ R and ε > 0, and jointly continuous in (t, t0) for t > t0.

In order to show that Γ and ∂α+βΓ

∂xα∂xβ0
are jointly continuous in the region R2N+2

∗ (see (1.13)) we also

need to show that these functions tend to zero as (x, t)→
(
y, t+

0

)
and y , x0. For Γ, this assertion follows

by Proposition 3.4: for y , x0 and (x, t)→
(
y, t+

0

)
we have

|x − E (t − t0) x0|
2
→ |y − x0|

2 , 0,

hence
1

(t − t0)Q/2 e−c2
|x−E(t−t0)x0 |

2

t−t0 → 0

and the same is true for Γ (x, t; x0, t0) .
To prove the analogous assertion for ∂α+βΓ

∂xα∂xβ0
we first need to establish some upper bounds for these

derivatives, which will be useful several times in the following.

Mathematics in Engineering Volume 2, Issue 4, 734–771.



749

Proposition 4.1. For t > s, let C (t, s)−1 =
{
γi j (t, s)

}N

i, j=1
, let

C′ (t, s) = E (t − s)T C (t, s)−1 E (t − s)

and let C′ (t, s) =
{
γ′i j (t, s)

}N

i, j=1
. Then:

(i) For every x, y ∈ RN , every t > s, k, h = 1, 2, ...,N,

∂xkΓ (x, t; y, s) = −
1
2

Γ (x, t; y, s) ·
N∑

i=1

γik (t, s) (x − E (t − s) y)i (4.1)

∂2
xh xk

Γ (x, t; y, s) = Γ (x, t; y, s)

1
4

∑
i

γik (t, s) (x − E (t − s) y)i

 · (4.2)

·

∑
j

γ jh (t, s) (x − E (t − s) y) j

 − 1
2
γhk (t, s)


∂ykΓ (x, t; y, s) = −

1
2

Γ (x, t; y, s) ·
N∑

i=1

γ′ik (t, s) (y − E (s − t) x)i (4.3)

∂2
yhyk

Γ (x, t; y, s) = Γ (x, t; y, s) ·

1
4

∑
i

γ′ik (t, s) (y − E (s − t) x)i

 · (4.4)

·

∑
j

γ′jh (t, s) (y − E (s − t) x) j

 − 1
2
γ′hk (t, s)

 .
(ii) For every n,m = 0, 1, 2, ... there exists c > 0 such that for every x, y ∈ RN , every t > s∑

|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣

≤ cΓ (x, t; y, s) ·
{
1 +

∥∥∥C (t, s)−1
∥∥∥ +

∥∥∥C (t, s)−1
∥∥∥n
|x − E (t − s) y|n

}
·
{
1 + ‖C′ (t, s)‖ + ‖C′ (t, s)‖m |y − E (s − t) x|m

}
(4.5)

where ‖·‖ stands for a matrix norm.

Proof. A straightforward computation gives (4.1) and (4.2). Iterating this computation we can also
bound ∑

|α|≤n

∣∣∣∂αxΓ (x, t; y, s)
∣∣∣ ≤ cΓ (x, t; y, s) ·

·
{
1 +

∥∥∥C (t, s)−1
∥∥∥ +

∥∥∥C (t, s)−1
∥∥∥n
|x − E (t − s) y|n

}
.

To compute y-derivatives of Γ, it is convenient to write

(x − E (t − s) y)T C (t, s)−1 (x − E (t − s) y)
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= (y − E (s − t) x)T C′ (t, s) (y − E (s − t) x)

with
C′ (t, s) = E (t − s)T C (t, s)−1 E (t − s) .

With this notation, we have

Γ (x, t; y, s) =
1

(4π)N/2 √det C (t, s)
e−(

1
4 (y−E(s−t)x)T C′(t,s)(y−E(s−t)x)+(t−s) Tr B)

and an analogous computation gives (4.3), (4.4) and, by iteration∑
|α|≤m

∣∣∣∂αy Γ (x, t; y, s)
∣∣∣ ≤ cΓ (x, t; y, s) ·

·
{
1 + ‖C′ (t, s)‖ + ‖C′ (t, s)‖m |y − E (s − t) x|m

}
and finally also (4.5). �

With the previous bounds in hands we can now prove the following:

Theorem 4.2 (Upper bounds on the derivatives of Γ). (i) For every n,m = 0, 1, 2... and t, s ranging in
a compact subset of {(t, s) : t ≥ s + ε} for some ε > 0 we have∑

|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣ (4.6)

≤ Ce−C′ |x−E(t−s)y|2 · {1 + |x − E (t − s) y|n + |y − E (s − t) x|m}

for every x, y ∈ RN , for constants C,C′ depending on n,m and the compact set.
In particular, for fixed t > s we have

lim
|x|→+∞

∂αx∂
β
yΓ (x, t; y, s) = 0 for every y ∈ RN

lim
|y|→+∞

∂αx∂
β
yΓ (x, t; y, s) = 0 for every x ∈ RN

for every multiindices α, β.
(ii) For every n,m = 0, 1, 2... there exists δ ∈ (0, 1) ,C, c > 0 such that for 0 < t − s < δ and every

x, y ∈ RN we have ∑
|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣

≤
C

(t − s)Q/2 e−c |x−E(t−s)y|2
t−s ·

{
(t − s)−σN + (t − s)−nσN |x − E (t − s) y|n

}
·
{
(t − s)−σN + (t − s)−mσN |y − E (s − t) x|m

}
. (4.7)

In particular, for every fixed x0, y ∈ RN , x0 , y, s ∈ R,

lim
(x,t)→(x0,s+)

∑
|α|+|β|≤k

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣ = 0

so that Γ and ∂αx∂
β
yΓ (x, t; y, s) are jointly continuous in the region R2N+2

∗ .
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Proof. (i) The matrix C (t, s) is jointly continuous in (t, s) and, by Proposition 2.2 is positive definite
for any t > s. Hence for t, s ranging in a compact subset of {(t, s) : t ≥ s + ε} we have∥∥∥C (t, s)−1

∥∥∥n
+ ‖C′ (t, s)‖m ≤ c

e−(
1
4 (x−E(t−s)y)T C(t,s)−1(x−E(t−s)y)+(t−s) Tr B) ≤ c1e−c|x−E(t−s)y|2

for some c, c1 > 0 only depending on n,m and the compact set. Hence by (4.5) and (1.12) we get (4.6).
Let now t, s be fixed. If y is fixed and |x| → ∞ then (4.6) gives∑

|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣ ≤ Ce−C′ |x|2 {1 + |x|n + |x|m} → 0.

If x is fixed and |y| → ∞,∑
|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣ ≤ Ce−C′ |E(t−s)y|2 {1 + |E (t − s) y|n + |E (s − t) x|m} → 0,

because when |y| → ∞ also |E (t − s) y| → ∞, since E (t − s) is invertible.
(ii) Applying (4.5) together with Proposition 3.4 we get that for some δ ∈ (0, 1), whenever 0 <

t − s < δ we have∑
|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣

≤
1

c (t − s)Q/2 e−c |x−E(t−s)y|2
t−s ·

{
1 +

∥∥∥C (t, s)−1
∥∥∥ +

∥∥∥C (t, s)−1
∥∥∥n
|x − E (t − s) y|n

}
·
{
1 + ‖C′ (t, s)‖ + ‖C′ (t, s)‖m |y − E (s − t) x|m

}
.

Next, we recall that by Proposition 3.2 we have∥∥∥C (t, s)−1
∥∥∥ ≤ c

∥∥∥C0 (t − s)−1
∥∥∥

by Proposition 3.3, for 0 < t − s ≤ δ

≤ c′
∥∥∥C∗0 (t − s)−1

∥∥∥ ≤ c′′ (t − s)−σN

and an analogous bound holds for C′ (t, s), for small (t − s). Hence we get (4.7).
If now x0 , y are fixed, from (4.7) we deduce∑

|α|≤n,|β|≤m

∣∣∣∂αx∂βyΓ (x, t; y, s)
∣∣∣ ≤ C

(t − s)
Q
2 +(n+m)σN

exp
(
−

c
t − s

)
→ 0

as (x, t)→ (x0, s+) . �

With the above theorem, the proof of point (i) in Theorem 1.4 is complete.

Remark 4.3 (Long time behavior of Γ). We have shown that the fundamental solution Γ (x, t; y, s) and
its spacial derivatives of every order tend to zero for x or y going to infinity, and tend to zero for t → s+

and x , y. It is natural to ask what happens for t → +∞. However, nothing can be said in general
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about this limit, even when the coefficients ai j are constant, and even in nondegenerate cases. Compare,
for N = 1, the heat operator

Hu = uxx − ut,

for which

Γ (x, y; 0, 0) =
1
√

4πt
e−

x2
4t → 0 for t → +∞, every x ∈ R

and the operator
Lu = uxx + xux − ut

for which (1.12) gives

Γ (x, t; 0, 0) =
1√

2π
(
1 − e−2t)e

− x2

2(1−e−2t) →
1
√

2π
e−

x2
2 as t → +∞.

4.2. Γ is a solution

In this section we will prove points (ii), (iii), (vi) of Theorem 1.4.
We want to check that our “candidate fundamental solution” with pole at (x0, t0), given by (1.12),

actually solves the equation outside the pole, with respect to (x, t). Note that, by the results in § 4.1 we
already know that Γ is infinitely differentiable w.r.t. x, x0, and a.e. differentiable w.r.t. t, t0.

Theorem 4.4. For every fixed (x0, t0) ∈ RN+1,

L (Γ (·, ·; x0, t0)) (x, t) = 0 for a.e. t > t0 and every x ∈ RN .

Before proving the theorem, let us establish the following easy fact, which will be useful in the
subsequent computation and is also interesting in its own:

Proposition 4.5. For every t > t0 and x0 ∈ R
N we have∫

RN
Γ (x, t; x0, t0) dx = e−(t−t0) Tr B (4.8)∫

RN
Γ (x0, t; y, t0) dy = 1.

Proof. Let us compute, for t > t0:∫
RN

Γ (x, t; x0, t0) dx

=
e−(t−t0) Tr B

(4π)N/2 √det C (t, t0)

∫
RN

e−
1
4 (x−E(t−t0)x0)T C−1(t,t0)(x−E(t−t0)x0)dx

letting x = E (t − t0) x0 + 2C (t, t0)1/2 y; dx = 2N det C (t, t0)1/2 dy

=
e−(t−t0) Tr B

(4π)N/2 √det C (t, t0)
2N

√
det C (t, t0)

∫
RN

e−|y|
2
dy = e−(t−t0) Tr B.

Next, ∫
RN

Γ (x0, t; y, t0) dy
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=
e−(t−t0) Tr B

(4π)N/2 √det C (t, t0)

∫
RN

e−
1
4 (x0−E(t−t0)y)T C−1(t,t0)(x0−E(t−t0)y)dy

letting y = E (t0 − t)
(
x0 − 2C (t, t0)1/2 z

)
;

dy = 2N det C (t, t0)1/2 det E (t0 − t) dz = 2N det C (t, t0)1/2 e(t−t0) Tr Bdz

=
e−(t−t0) Tr B

(4π)N/2 √det C (t, t0)
2N det C (t, t0)1/2 e(t−t0) Tr B

∫
RN

e−|y|
2
dy = 1.

Here in the change of variables we used the relation det
(
exp B

)
= eTr B, holding for every square matrix

B. �

Proof of Theorem 4.4. Keeping the notation of Proposition 4.1, and exploiting (4.1)–(4.2) we have

N∑
k, j=1

b jkxk∂x jΓ (x, t; x0, t0) = (∇xΓ (x, t; x0, t0))T Bx

= −
1
2

Γ (x, t; x0, t0) (x − E (t − t0) x0)T C (t, t0)−1 Bx. (4.9)

q∑
h,k=1

ahk (t) ∂2
xh xk

Γ (x, t; x0, t0)

= Γ

1
4

N∑
i, j=1

 q∑
h,k=1

ahk (t) γik (t, t0) γ jh (t)

 ·
· (x − E (t − t0) x0)i (x − E (t − t0) x0) j −

1
2

q∑
h,k=1

ahk (t) γhk (t, t0)


= Γ (x, t; x0, t0) ·

{
1
4

(x − E (t − t0) x0)T C (t, t0)−1 A (t) C−1 (x − E (t − t0) x0) (4.10)

−
1
2

Tr A (t) C (t, t0)−1
}
.

∂tΓ (x, t; x0, t0)

= −
∂t (det C (t, t0))

(4π)N/2 2 det3/2 C (t, t0)
e−(

1
4 (x−E(t−t0)x0)T C(t,t0)−1(x−E(t−t0)x0)+(t−t0) Tr B)

− Γ (x, t; x0, t0) ·

· ∂t

(
1
4

(x − E (t − t0) x0)T C (t, t0)−1 (x − E (t − t0) x0) + (t − t0) Tr B
)

= − Γ (x, t; x0, t0)
{
∂t (det C (t, t0))
2 det C (t, t0)

(4.11)

+
1
4
∂t

(
(x − E (t − t0) x0)T C (t, t0)−1 (x − E (t − t0) x0)

)
+ Tr B

}
.
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To shorten notation, from now on, throughout this proof, we will write

C for C (t, t0) , and
E for E (t − t0) .

To compute the t-derivative appearing in (4.11) we start writing

∂t

(
(x − Ex0)T C−1 (x − Ex0)

)
= 2 (−∂tEx0)T C−1 (x − Ex0)

+ (x − Ex0)T ∂t

(
C−1

)
(x − Ex0) . (4.12)

First, we note that
∂tE = −B exp (− (t − t0) B) = −BE. (4.13)

Also, note that B commutes with E (t) and BT commutes with E (t)T . Second, differentiating the
identity C.−1C = I we get

∂t

(
C−1

)
= −C−1∂t (C) C−1. (4.14)

In turn, at least for a.e. t, we have

∂t (C (t, t0)) = E (0) A (t) E (0)T +

∫ t

t0
∂tE (t − σ) A (σ) E (t − σ)T dσ

+

∫ t

t0
E (t − σ) A (σ) ∂tE (t − σ)T dσ

= A (t) − BC −CBT .

By (4.14) this gives
∂t

(
C−1

)
= −C−1A (t) C−1 + C−1B + BTC−1. (4.15)

Inserting (4.13) and (4.15) in (4.12) and then in (4.11) we have

∂t

(
(x − Ex0)T C−1 (x − Ex0)

)
= 2 (BEx0)T C−1 (x − Ex0)

+ (x − Ex0)T
[
−C−1A (t) C−1 + 2BTC−1

]
(x − Ex0) .

∂tΓ = −Γ

{
∂t (det C)
2 det C

+ Tr B +
1
4

[
2 (BEx0)T C−1 (x − Ex0)

+ (x − Ex0)T
[
−C−1A (t) C−1 + 2BTC−1

]
(x − Ex0)

]}

= −Γ

{
∂t (det C)
2 det C

+ Tr B −
1
4

(x − Ex0)T C−1A (t) C−1 (x − Ex0)

+
1
2

xT BTC−1 (x − Ex0)
}
. (4.16)
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Exploiting (4.10), (4.9) and (4.16) we can now compute LΓ:

q∑
h,k=1

ahk (t) ∂2
xh xk

Γ + (∇Γ)T Bx − ∂tΓ

= Γ

{
1
4

(x − Ex0)T C−1A (t) C−1 (x − Ex0) −
1
2

Tr A (t) C−1

−
1
2

Γ (x − Ex0)T C−1Bx +
∂t (det C)
2 det C

+ Tr B

−
1
4

(x − Ex0)T C−1A (t) C−1 (x − Ex0) +
1
2

xT BTC−1 (x − Ex0)
}

= Γ

{
−

1
2

Tr A (t) C−1 +
∂t (det C)
2 det C

+ Tr B
}
.

To conclude our proof we are left to check that, in the last expression, the quantity in braces identically
vanishes for t > t0. This, however, is not a straightforward computation, since the term ∂t (det C) is not
easily explicitly computed. Let us state this fact as a separate ancillary result. �

Proposition 4.6. For a.e. t > t0 we have

∂t (det C (t, t0))
2 det C (t, t0)

=
1
2

Tr A (t) C (t, t0)−1
− Tr B.

To prove this proposition we also need the following

Lemma 4.7. For every N × N matrix A, and every x0 ∈ R
N we have:∫

RN
e−|x|

2 (
xT Ax

)
dx =

πN/2

2
Tr A∫

RN
e−|x|

2 (
xT

0 Ax
)

dx = 0. (4.17)

Proof of Lemma 4.7. The second identity is obvious for symmetry reasons. As to the first one, letting
A =

(
ai j

)N

i, j=1
, ∫

RN
e−|x|

2 (
xT Ax

)
dx

=

N∑
i=1

 ∑
j=1,...,N, j,i

ai j

∫
RN

e−|x|
2
xix jdx + aii

∫
RN

e−|x|
2
x2

i dx


=

N∑
i=1

{
0 + aii

(∫
RN−1

e−|w|
2
dw

) (∫
R

e−x2
i x2

i dxi

)}

=

N∑
i=1

aiiπ
N−1

2

(∫
R

e−t2t2dt
)

= π
N−1

2 ·

√
π

2

N∑
i=1

aii =
πN/2

2
Tr A

where the integrals corresponding to the terms with i , j vanish for symmetry reasons. �
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Proof of Proposition 4.6. Taking ∂
∂t in the identity (4.8) we have, by (4.16), for almost every t > t0,

− e−(t−t0) Tr B Tr B =

∫
RN

∂Γ

∂t
(x, t; x0, t0) dx

= −

∫
RN

Γ (x, t; x0, t0)
{
∂t (det C)
2 det C

+ Tr B +
1
2

xT BTC−1 (x − Ex0)

−
1
4

(x − Ex0)T C−1A (t) C−1 (x − Ex0)
}

dx

= −

{
∂t (det C)
2 det C

+ Tr B
}

e−(t−t0) Tr B −

∫
RN

Γ (x, t; x0, t0)
{

1
2

xT BTC−1 (x − Ex0)

−
1
4

(x − Ex0)T C−1A (t) C−1 (x − Ex0)
}

dx

hence
∂t (det C)
2 det C

· e−(t−t0) Tr B = −
e−(t−t0) Tr B

(4π)N/2
√

det C
·

·

∫
RN

e−
1
4 (x−Ex0)T C−1(x−Ex0)

{
1
2

xT BTC−1 (x − Ex0)

−
1
4

(x − Ex0)T C−1A (t) C−1 (x − Ex0)
}

dx

and letting again x = Ex0 + 2C1/2y inside the integral

∂t (det C)
2 det C

= −
1
πN/2

∫
RN

e−|y|
2
·

·
{(

xT
0 ET + 2yTC1/2

)
BTC−1/2y − yTC−1/2A (t) C−1/2y

}
dy

= −
1
πN/2

πN/2

2

(
0 + 2 Tr C1/2BTC−1/2 + Tr C−1/2A (t) C−1/2

)
= −Tr C1/2BTC−1/2 +

1
2

Tr C−1/2A (t) C−1/2.

where we used Lemma 4.7. Finally, since similar matrices have the same trace,

− Tr C1/2BC−1/2 +
1
2

Tr C−1/2A (t) C−1/2

= −Tr B +
1
2

Tr A (t) C−1,

so we are done. �

The proof of Proposition 4.6 also completes the proof of Theorem 4.4.

Remark 4.8. Since, by Theorem 4.4, we can write

∂tΓ (x, t, x0, t0) =

q∑
i, j=1

ai j (t) ∂2
xi x j

Γ (x, t, x0, t0) +

N∑
k, j=1

b jkxk∂x jΓ (x, t, x0, t0) ,

the function ∂tΓ satisfies upper bounds analogous to those proved in Theorem 4.2 for ∂2
xi x j

Γ.
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Let us now show that Γ satisfies, with respect to the other variables, the transposed equation, that is:

Theorem 4.9. Letting

L∗u =

q∑
i, j=1

ai j (s) ∂2
yiy j

u −
N∑

k, j=1

b jkyk∂ j ju − u Tr B + ∂su

we have, for every fixed (x, t)
L∗ (Γ (x, t; ·, ·)) (y, s) = 0

for a.e. s < t and every y.

Proof. We keep the notation used in the proof of Proposition 4.1:

C′ (t, s) = E (t − s)T C (t, s)−1 E (t − s)

Γ (x, t; y, s) =
1

(4π)N/2 √det C (t, s)
e−(

1
4 (y−E(s−t)x)T C′(t,s)(y−E(s−t)x)+(t−s) Tr B).

Exploiting (4.3) and (4.4) we have, by a tedious computation which is analogous to that in the proof of
Theorem 4.4,

L∗Γ (x, t; y, s) =
1
2

Γ (x, t; y, s)
{
−Tr A (s) C′ (t, s) −

∂s (det C (t, s))
det C (t, s)

+ yT BTC′ (t, s) y − yT BT E (t − s)T C (t, s)−1 x

+ (BE (t − s) y)T C (t, s)−1 (x − E (t − s) y)
}

=
1
2

Γ (x, t; y, s)
{
−Tr A (s) C′ (t, s) −

∂s (det C (t, s))
det C (t, s)

}
.

So we are done provided that: �

Proposition 4.10. For a.e. s < t we have

∂s (det C (t, s))
2 det C (t, s)

= −Tr A (s) C′ (t, s) .

Proof. Taking ∂
∂s in the identity (4.8) we have, by (4.16), for almost every s < t,

e−(t−s) Tr B Tr B =

∫
RN

∂Γ

∂s
(x, t; x0, s) dx

= −

∫
RN

Γ (x, t; x0, s) ·

·

{
∂s (det C)

2 det C
− Tr B −

1
2

(BE (t − s) x0)T C (t, s)−1 (x − E (t − s) x0)

+
1
4

(E (s − t) x − x0)T C′ (t, s) A (s) C′ (t, s) (E (s − t) x − x0)
}

dx

Mathematics in Engineering Volume 2, Issue 4, 734–771.



758

= −

{
∂s (det C)

2 det C
− Tr B

}
e−(t−s) Tr B

−

∫
RN

Γ (x, t; x0, s)
{
−

1
2

(BE (t − s) x0)T C (t, s)−1 (x − E (t − s) x0)

+
1
4

(E (s − t) x − x0)T C′ (t, s) A (s) C′ (t, s) (E (s − t) x − x0)
}

dx

hence

∂s (det C)
2 det C

= −
1

(4π)N/2
√

det C

∫
RN

e−
1
4 (x−E(t−s)x0)T C(t,s)−1(x−E(t−s)x0)

·

·

{
−

1
2

(BE (t − s) x0)T C (t, s)−1 (x − E (t − s) x0)

+
1
4

(E (s − t) x − x0)T C′ (t, s) A (s) C′ (t, s) (E (s − t) x − x0)
}

dx

and letting again x = E (t − s) x0 + 2C1/2 (t, s) y inside the integral, applying Lemma 4.7 and (4.17),
with some computation we get

∂s (det C)
det C

= −Tr C−1/2 (t, s) E (t − s) A (s) E (t − s)T C (t, s)−1/2 .

Since C−1/2 (t, s) E (t − s) A (s) E (t − s)T C (t, s)−1/2 and A (s) C′ (t, s) are similar, they have the same
trace, so the proof is concluded. �

4.3. The Cauchy problem

In this section we will prove points (iv), (v), (vii) of Theorem 1.4.
We are going to show that the Cauchy problem can be solved, by means of our fundamental solution

Γ. Just to simplify notation, let us now take t0 = 0 and let C (t) = C (t, 0). We have the following:

Theorem 4.11. Let

u (x, t) =

∫
RN

Γ (x, t; y, 0) f (y) dy

=
e−t Tr B

(4π)N/2 √det C (t)

∫
RN

e−
1
4 (x−E(t)y)T C(t)−1(x−E(t)y) f (y) dy. (4.18)

Then:
(a) if f ∈ Lp

(
RN

)
for some p ∈ [1,∞] or f ∈ C0

b

(
RN

)
(bounded continuous) then u solves the

equation Lu = 0 in RN × (0,∞) and u (·, t) ∈ C∞
(
RN

)
for every fixed t > 0.

(b) if f ∈ C0
(
RN

)
and there exists C > 0 such that (1.15) holds, then there exists T > 0 such that u

solves the equation Lu = 0 in RN × (0,T ) and u (·, t) ∈ C∞
(
RN

)
for every fixed t ∈ (0,T ).

The initial condition f is attained in the following senses:
(i) For every p ∈ [1,+∞), if f ∈ Lp

(
RN

)
we have u (·, t) ∈ Lp

(
RN

)
for every t > 0, and

‖u (·, t) − f ‖Lp(RN) → 0 as t → 0+.
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(ii) If f ∈ L∞
(
RN

)
and f is continuous at some point x0 ∈ R

N then

u (x, t)→ f (x0) as (x, t)→ (x0, 0) .

(iii) If f ∈ C0
∗

(
RN

)
(i.e., vanishing at infinity) then

sup
x∈RN
|u (x, t) − f (x)| → 0 as t → 0+.

(iv) If f ∈ C0
(
RN

)
and satisfies (1.15), then

u (x, t)→ f (x0) as (x, t)→ (x0, 0) .

Proof. From Theorem 4.2, (i), we read that for (x, t) ranging in a compact subset of RN × (0,+∞), and
every y ∈ RN , ∑

|α|≤n

∣∣∣∂αxΓ (x, t; y, 0)
∣∣∣ ≤ ce−c1 |y|2 · {1 + |y|n}

for suitable constants c, c1 > 0. Moreover, by Remark 4.8, |∂tΓ| also satisfies this bound (with n = 2).
This implies that for every f ∈ Lp

(
RN

)
for some p ∈ [1,∞], (in particular for f ∈ C0

b

(
RN

)
) the integral

defining u converges and Lu can be computed taking the derivatives inside the integral. Moreover,
all the derivatives uxi , uxi x j are continuous, while ut is defined only almost everywhere, and locally
essentially bounded. Then by Theorem 4.4 we haveLu (x, t) = 0 for a.e. t > 0 and every x ∈ RN . Also,
the x-derivatives of every order can be actually taken under the integral sign, so that u (·, t) ∈ C∞

(
RN

)
.

This proves (a). Postponing for a moment the proof of (b), to show that u attains the initial condition
(points (i)–(iii)) let us perform, inside the integral in (4.18), the change of variables

C (t)−1/2 (x − E (t) y) = 2z

y = E (−t)
(
x − 2C (t)1/2 z

)
dy = 2Net Tr B det C (t)1/2 dz

so that
u (x, t) =

1
πN/2

∫
RN

e−|z|
2
f
(
E (−t)

(
x − 2C (t)1/2 z

))
dz

and, since
∫
RN

e−|z|
2

πN/2 dz = 1,

|u (x, t) − f (x)| ≤
∫
RN

e−|z|
2

πN/2

∣∣∣∣ f (
E (−t)

(
x − 2C (t)1/2 z

))
− f (x)

∣∣∣∣ dz.

Let us now proceed separately in the three cases.
(i) By Minkowsky’s inequality for integrals we have

‖u (·, t) − f ‖Lp(RN) ≤
∫
RN

e−|z|
2

πN/2

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
Lp(RN)

dz.

Next, ∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
Lp(RN)
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≤

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))∥∥∥∥
Lp(RN)

+ ‖ f ‖Lp(RN)

= ‖ f (E (−t) (·))‖Lp(RN) + ‖ f ‖Lp(RN) ≤ c ‖ f ‖Lp(RN)

for 0 < t < 1, since

‖ f (E (−t) (·))‖p
Lp(RN) =

∫
RN
| f (E (−t) (x))|p dx

letting E (−t) x = y; x = E (t) y; dx = e−t Tr Bdy,

= e−t Tr B ‖ f ‖Lp(RN) ≤ e|Tr B| ‖ f ‖Lp(RN) for 0 < t < 1.

This means that for every t ∈ (0, 1) we have

e−|z|
2

πN/2

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
Lp(RN)

≤ c ‖ f ‖Lp(RN)
e−|z|

2

πN/2 ∈ L1
(
RN

)
.

Let us show that for a.e. fixed z ∈ RN we also have

e−|z|
2

πN/2

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
Lp(RN)

→ 0 as t → 0+,

this will imply the desired result by Lebesgue’s theorem.∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
Lp(RN)

≤

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (E (−t) ·)

∥∥∥∥
Lp(RN)

+ ‖ f (E (−t) (·)) − f ‖Lp(RN) .

Now: ∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (E (−t) ·)

∥∥∥∥p

Lp(RN)

=

∫
RN

∣∣∣∣ f (
E (−t)

(
x − 2C (t)1/2 z

))
− f (E (−t) x)

∣∣∣∣p dx

= et Tr B
∫
RN

∣∣∣∣ f (
y − 2E (−t) C (t)1/2 z

)
− f (y)

∣∣∣∣p dy→ 0

for z fixed and t → 0+, because 2E (−t) C (t)1/2 z → 0 and the translation operator is continuous on
Lp

(
RN

)
.

It remains to show that

‖ f (E (−t) (·)) − f ‖Lp(RN) → 0 as t → 0+,

which is not straightforward. For every fixed ε > 0, let φ be a compactly supported continous function
such that ‖ f − φ‖p < ε, then

‖ f (E (−t) (·)) − f ‖p ≤ ‖ f (E (−t) (·)) − φ (E (−t) (·))‖p

+ ‖φ (E (−t) (·)) − φ‖p + ‖ f − φ‖p
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and
‖ f (E (−t) (·)) − φ (E (−t) (·))‖p =

(
et Tr B

)1/p
‖ f − φ‖p ≤

(
e|Tr B|

)1/p
ε

for t ∈ (0, 1). Let sprt φ ⊂ BR (0), then for every t ∈ (0, 1) we have |E (−t) (x)| ≤ c |x| so that

‖φ (E (−t) (·)) − φ‖p
Lp(RN) =

∫
|x|<CR

|φ (E (−t) (x)) − φ (x)|p dx.

Since for every x ∈ RN , φ (E (−t) (x))→ φ (x) as t → 0+ and

|φ (E (−t) (x)) − φ (x)|p ≤ 2 max |φ|p

which is integrable on BCR (0), by uniform continuity of φ,

‖φ (E (−t) (·)) − φ‖Lp(RN) → 0 as t → 0+,

hence for t small enough
‖ f (E (−t) (·)) − f ‖p ≤ cε,

and we are done.
(ii) Let f ∈ L∞

(
RN

)
, and let f be continuous at some point x0 ∈ R

N then

|u (x, t) − f (x0)| ≤
∫
RN

e−|z|
2

πN/2

∣∣∣∣ f (
E (−t)

(
x − 2C (t)1/2 z

))
− f (x0)

∣∣∣∣ dz.

Now, for fixed z ∈ RN and (x, t)→ (x0, 0) we have

E (−t)
(
x − 2C (t)1/2 z

)
→ x0

f
(
E (−t)

(
x − 2C (t)1/2 z

))
→ f (x0)

while
e−|z|

2

πN/2

∣∣∣∣ f (
E (−t)

(
x − 2C (t)1/2 z

))
− f (x0)

∣∣∣∣ ≤ 2 ‖ f ‖L∞(RN)
e−|z|

2

πN/2 ∈ L1
(
RN

)
hence by Lebesgue’s theorem

|u (x, t) − f (x0)| → 0.

(iii) As in point (i) we have

‖u (·, t) − f ‖L∞(RN) ≤
∫
RN

e−|z|
2

πN/2

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
L∞(RN)

dz

and as in point (ii)

e−|z|
2

πN/2

∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
L∞(RN)

≤ 2 ‖ f ‖L∞(RN)
e−|z|

2

πN/2 ∈ L1
(
RN

)
.

Let us show that for every fixed z we have∥∥∥∥ f
(
E (−t)

(
· − 2C (t)1/2 z

))
− f (·)

∥∥∥∥
L∞(RN)

→ 0 as t → 0+,
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hence by Lebesgue’s theorem we will conclude the desired assertion.
For every ε > 0 we can pick φ ∈ C0

c

(
RN

)
such that ‖ f − φ‖∞ < ε, then

‖ f (E (−t) (·)) − f ‖∞ ≤ ‖ f (E (−t) (·)) − φ (E (−t) (·))‖∞ + ‖φ (E (−t) (·)) − φ‖∞ + ‖ f − φ‖∞
< 2ε + ‖φ (E (−t) (·)) − φ‖∞ .

Since φ is compactly supported, there exists R > 0 such that for every t ∈ (0, 1) we have φ (E (−t) (x))−
φ (x) , 0 only if |x| < R.

|E (−t) (x) − x| ≤ |E (−t) − I|R.

Since φ is uniformly continuous, for every ε > 0 there exists δ > 0 such that for 0 < t < δ we have

|φ (E (−t) (x)) − φ (x)| < ε

whenever |x| < R. So we are done.
Let us now prove (b). To show that u is well defined, smooth in x, and satisfies the equation, for

|x| ≤ R let us write

u (x, t) =

∫
|y|<2R

Γ (x, t; y, 0) f (y) dy +

∫
|y|>2R

Γ (x, t; y, 0) f (y) dy

≡ I (x, t) + II (x, t) .

Since f is bounded for |y| < 2R, reasoning like in the proof of point (a) we see that LI (x, t) can be
computed taking the derivatives under the integral sign, so that LI (x, t) = 0. Moreover, the function
x 7→ I (x, t) is C∞

(
RN

)
.

To prove the analogous properties for II (x, t) we have to apply Theorem 4.2, (ii): there exists
δ ∈ (0, 1) ,C, c > 0 such that for 0 < t < δ and every x, y ∈ RN we have, for n = 0, 1, 2, ...∑

|α|≤n

∣∣∣∂αxΓ (x, t; y, 0)
∣∣∣ ≤ C

tQ/2 e−c |x−E(t)y|2
t ·

{
t−σN + t−nσN |x − E (t) y|n

}
.

Recall that |x| < R and |y| > 2R. For δ small enough and t ∈
(
δ
2 , δ

)
we have∑

|α|≤n

∣∣∣∂αxΓ (x, t; y, 0)
∣∣∣ ≤ Ce−c |y|

2
t · {1 + |y|n}

with constants depending on δ, n. Therefore, if α is the constant appearing in the assumption (1.15),∫
|y|>2R

∑
|α|≤n

∣∣∣∂αxΓ (x, t; y, 0)
∣∣∣ | f (y)| dy

≤ C
∫
|y|>2R

e−c |y|
2
δ · {1 + |y|n} eα|y|

2
| f (y)| e−α|y|

2
dy

≤ C sup
y∈RN

(
e(− c

δ+α)|y|2 {1 + |y|n}
)
·

∫
RN
| f (y)| e−α|y|

2
dy
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which shows that for δ small enoughLII (x, t) can be computed taking the derivatives under the integral
sign, so that LII (x, t) = 0. Moreover, the function x 7→ II (x, t) is C∞

(
RN

)
. This proves (b).

(iv). For |x0| ≤ R let us write

u (x, t) =

∫
|y|<2R

Γ (x, t; y, 0) f (y) dy +

∫
|y|>2R

Γ (x, t; y, 0) f (y) dy ≡ I + II.

Applying point (ii) to f (y) χB2r(0) we have

I =

∫
|y|<2R

Γ (x, t; y, 0) f (y) dy→ f (x0)

as (x, t)→ (x0, 0). Let us show that II → 0. By (3.7) we have

|II| ≤
∫
|y|>2R

1
ctQ/2 e−c |x−E(t)y|2

t | f (y)| dy.

For y fixed with |y| > 2R, hence |x0 − y| , 0, we have

lim
(x,t)→(x0,0)

1
tQ/2 e−c |x−E(t)y|2

t = lim
(x,t)→(x0,0)

1
tQ/2 e−c |x0−y|2

t = 0.

Since |y| > 2R, |x0| < R, for x → x0 we can assume |x| < 3
2R and for t small enough we have

|x − E (t) y| ≥ c |y| for some c > 0, hence

1
ctQ/2 e−c |x−E(t)y|2

t | f (y)| χ{|y|>2R} ≤
1

ctQ/2 e−c1
|y|2

t eα|y|
2
χ{|y|>2R} | f (y)| e−α|y|

2

≤
1

ctQ/2 e(α− c1
t )|y|2χ{|y|>2R}

{
| f (y)| e−α|y|

2}
for t small enough

≤
1

ctQ/2 e−
c1
2t |y|

2
χ{|y|>2R}

{
| f (y)| e−α|y|

2}
≤

1
ctQ/2 e−

2c1
t R2 {
| f (y)| e−α|y|

2}
≤ c | f (y)| e−α|y|

2
∈ L1

(
RN

)
.

Hence by Lebesgue’s theorem II → 0 as (x, t)→ (x0, 0) , and we are done. �

Remark 4.12. If f is an unbounded continuous function satisfying (1.15), the solution of the Cauchy
problem can blow up in finite time, already for the heat operator: the solution of{

ut − uxx = 0 in R × (0,+∞)
u (x, 0) = ex2

is given by

u (x, t) =
1
√

4πt

∫
R

e−
(x−y)2

4t ey2
dy =

e
x2

1−4t

√
1 − 4t

for 0 < t <
1
4
,

with u (x, t)→ +∞ for t →
(

1
4

)−
.

Mathematics in Engineering Volume 2, Issue 4, 734–771.



764

We next prove a uniqueness results for the Cauchy problem (1.9). In the following we consider
solutions defined in some possibly bounded time interval [0,T ).

Theorem 4.13 (Uniqueness). Let L be an operator of the form (1.1) satisfying the assumptions (H1)–
(H2), let T ∈ (0,+∞], and let either f ∈ C(RN), or f ∈ Lp(RN) with 1 ≤ p < +∞.

If u1 and u2 are two solutions to the same Cauchy problem{
Lu = 0 in RN × (0,T ) ,
u (·, 0) = f ,

(4.19)

satisfying (1.16) for some C > 0, then u1 ≡ u2 in RN × (0,T ).

Proof. Because of the linearity of L, it is enough to prove that if the function u := u1 − u2 satisfies
(4.19) with f = 0 and (1.16), then u(x, t) = 0 for every (x, t) ∈ R × (0,+∞). We will prove that u = 0
in a suitably thin strip R × (0, t1), where t1 only depends on L and C, the assertion then will follow by
iterating this argument.

Let t1 ∈ (0,T ] be a fixed mumber that will be specified later. For every positive R we consider a
function hR ∈ C∞(RN), such that hR (ξ) = 1 whenever |ξ| ≤ R, hR (ξ) = 0 for every |ξ| ≥ R+1/2 and that
0 ≤ hR (ξ) ≤ 1. We also assume that all the first and second order derivatives of hR are bounded by a
constant that doesn’t depend on R. We fix a point (y, s) ∈ RN × (0, t1), and we let v denote the function

v (ξ, τ) := hR (ξ) Γ (y, s; ξ, τ) .

For ε ∈ (0, t1/2) we define the domain

QR,ε :=
{
(ξ, τ) ∈ RN × (0, t1) : |ξ| < R + 1, ε < τ < s − ε

}
and we also let QR = QR,0. Note that in QR,ε the function v (ξ, τ) is smooth in ξ and Lipschitz continuous
in τ.

By (1.1) and (1.10) we can compute the following Green identity, with u and v as above.

vLu − uL∗v

=

q∑
i, j=1

ai j (t)
(
v∂2

xi x j
u − u∂2

xi x j
v
)

+

N∑
k, j=1

b jkxk

(
v∂x ju + u∂x jv

)
− (v∂tu + u∂tv) + uv Tr B

=

q∑
i, j=1

∂xi

(
ai j (t)

(
v∂x ju − u∂x jv

))
+

N∑
k, j=1

∂x j

(
b jkxkuv

)
− ∂t (uv) .

We now integrate the above identity on QR,ε and apply the divergence theorem, noting that
v, ∂x1v, . . . , ∂xN v vanish on the lateral part of the boundary of QR,ε, by the properties of hR. Hence:∫

QR,ε

v(ξ, τ)Lu(ξ, τ) − u(ξ, τ)L∗v(ξ, τ)dξ dτ

=

∫
RN

u(ξ, ε)v(ξ, ε)dξ −
∫
RN

u(ξ, s − ε)v(ξ, s − ε)dξ.
(4.20)
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Concerning the last integral, since the function y 7→ hR(y)u(y, s) is continuous and compactly
supported, by Theorem 4.11, (iii) we have that∫

RN
u(ξ, s − ε)v(ξ, s − ε)dξ =

∫
RN

u(ξ, s − ε)hR(ξ)Γ(y, s; ξ, s − ε)dξ → hR(y)u(y, s)

as ε→ 0+. Moreover ∫
RN

u(ξ, ε)v(ξ, ε)dξ =

∫
RN

u(ξ, ε)hR(ξ)Γ(y, s; ξ, ε)dξ → 0,

as ε → 0+, since Γ is a bounded function whenever (ξ, ε) ∈ RN × (0, s/2), and u(·, ε)hR → 0 either
uniformly, if the inital datum is assumed by continuity, or in the Lp norm. Using the fact that Lu = 0
and u(·, 0) = 0, we conclude that, as |y| < R, (4.20) gives

u(y, s) =

∫
QR

u(ξ, τ)L∗v(ξ, τ)dξ dτ. (4.21)

Since L∗Γ(y, s; ξ, τ) = 0 whenever τ < s, we have

L∗ (hRΓ) =

q∑
i, j=1

ai j (τ) ∂2
ξiξ j

(hRΓ) −
N∑

k, j=1

b jkξk∂ξ j (hRΓ) − hR (Γ Tr B + ∂τΓ)

= Γ

q∑
i, j=1

ai j (τ) ∂2
ξiξ j

hR + 2
q∑

i, j=1

ai j (τ)
(
∂ξihR

) (
∂ξ jΓ

)
− Γ

N∑
k, j=1

b jkξk∂ξ jhR

therefore the identity (4.21) yields, since ∂ξihR = 0 for |ξ| ≤ R,

u(y, s) =

∫
QR\QR−1

u(ξ, τ)

 q∑
i, j=1

ai, j(τ)·

·
[
2∂ξihR(ξ)∂ξ jΓ (y, s; ξ, τ) + Γ(y, s; ξ, τ)∂ξiξ jhR(ξ)

]
−

N∑
k, j=1

b jkξk∂ξ jhR(ξ)Γ(y, s; ξ, τ)

 dξ dτ.

(4.22)

We claim that (4.22) implies

|u(y, s)| ≤
∫

QR\QR−1

C1|u(ξ, τ)|e−C|ξ|2dξ dτ, (4.23)

for some positive constant C1 only depending on the operator L and on the uniform bound f the
derivatives of hR, provided that t1 is sufficiently small. Our assertion then follows by letting R→ +∞.

So we are left to prove (4.23). By Proposition 3.4 we know that, for suitable constants δ ∈ (0, 1),
c1, c2 > 0, for 0 < s − τ ≤ δ and every y, ξ ∈ RN we have:

Γ (y, s, ξ, τ) ≤
c1

(s − τ)Q/2 e−c2
|y−E(s−τ)ξ|2

s−τ . (4.24)
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Moreover, from the computation in the proof of Theorem 4.9 we read that

∇ξΓ (y, s; ξ, τ) = −
1
2

Γ (y, s; ξ, τ) C′ (s, τ) (ξ − E (τ − s) y)

where
C′ (s, τ) = E (s − τ)T C (s, τ)−1 E (s − τ) .

Hence
∇ξΓ (y, s; ξ, τ) =

1
2

Γ (y, s; ξ, τ) E (s − τ)T C (s, τ)−1 (y − E (s − τ) ξ) .

By (3.3) we have inequality for matrix norms∥∥∥C (s, τ)−1
∥∥∥ ≤ c

∥∥∥C0 (s − τ)−1
∥∥∥

and, for 0 < s − τ ≤ δ
≤ c

∥∥∥C∗(s−τ)−1
0

∥∥∥ ≤ c ‖D0 (s − τ)‖−1

hence ∣∣∣∇ξΓ (y, s; ξ, τ)
∣∣∣ ≤ cΓ (y, s; ξ, τ) ‖D0 (s − τ)‖−1

|y − E (s − τ) ξ|

≤
c1

(s − τ)
Q
2 +σN

e−c2
|y−E(s−τ)ξ|2

s−τ |y − E (s − τ) ξ| . (4.25)

Now, in the integral in (4.22) we have R < |ξ| < R + 1. Then for |y| < R/2 and 0 < s − τ ≤ δ < 1 we
have

|ξ|

2
≤ |ξ| − |y| ≤ |y − ξ| ≤ |y − E (s − τ) ξ| + |E (s − τ) ξ − ξ|

≤ |y − E (s − τ) ξ| + ‖E (s − τ) − I‖ |ξ| ≤ |y − E (s − τ) ξ| +
|ξ|

4
.

Hence
|y − E (s − τ) ξ| ≥

|ξ|

4
.

Moreover
|y − E (s − τ) ξ| ≤ |y| + c |ξ| ≤ c1 |ξ| .

Hence (4.24)–(4.25) give

Γ (y, s, ξ, τ) ≤
c1

(s − τ)Q/2 e−c3
|ξ|2
s−τ∣∣∣∂ξ jΓ (y, s; ξ, τ)

∣∣∣ ≤ c1

(s − τ)
Q
2 +σN

|ξ| e−c3
|ξ|2
s−τ .

Therefore (4.22) gives

|u(y, s)| ≤
∫

QR\QR−1

|u(ξ, τ)|

 c1

(s − τ)
Q
2 +σN

|ξ| e−c3
|ξ|2
s−τ

 dξ dτ.
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We can assume R > 1, writing, for 0 < s − τ < 1 and every ξ ∈ RN with |ξ| > 1,

c1

(s − τ)
Q
2 +σN

|ξ| e−c3
|ξ|2
s−τ =

c1

(s − τ)
Q
2 +σN

|ξ| e−c3
1

s−τ e−c3
|ξ|2−1

s−τ

≤ c |ξ| e−c3
|ξ|2−1

s−τ ≤ c |ξ| e−c3(|ξ|2−1) = c4 |ξ| e−c3 |ξ|
2
≤ c5e−c6 |ξ|

2
.

This implies the Claim, so we are done. �

The link between the existence result of Theorem 4.11 and the uniqueness result of Theorem 4.13
is completed by the following

Proposition 4.14. (a) Let f be a bounded continuous function on RN , or a function belonging to
Lp

(
RN

)
for some p ∈ [1,∞). Then the function

u (x, t) =

∫
RN

Γ (x, t; y, 0) f (y) dy

satisfies the condition (1.16) for every fixed constants T,C > 0.
(b) If f ∈ C0

(
RN

)
satisfies the condition (1.15) for some constant α > 0 then the function u satisfies

(1.16) for some T,C > 0.

This means that in the class of functions satisfying (1.16) there exists one and only one solution to
the Cauchy problem, under any of the above assumptions on the initial datum f .

Proof. (a) If f is bounded continuous we simply have

|u (x, t)| ≤ ‖ f ‖C0
b(RN)

∫
RN

Γ (x, t; y, 0) dy = ‖ f ‖C0
b(RN)

by Proposition 4.5. Hence (1.16) holds for every fixed C,T > 0.
Let now f ∈ Lp

(
RN

)
for some p ∈ [1,∞). Let us write

u (x, t) =
e−t Tr B

(4π)N/2 √det C (t)

∫
RN

e−
1
4 (x−E(t)y)T C(t)−1(x−E(t)y) f (y) dy

=
e−t Tr B

(4π)N/2 √det C (t)

∫
RN

e−
1
4 (E(−t)x−y)T C′(t)(E(−t)x−y) f (y) dy

=
e−t Tr B

(4π)N/2 √det C (t)
(kt ∗ f ) (E (−t) x)

having set
kt (x) = e−

1
4 xT C′(t)x.

Then ∫ T

0

(∫
RN
|u (x, t)| e−C|x|2dx

)
dt

≤

∫ T

0

e−t Tr B

(4π)N/2 √det C (t)

(∫
RN
|(kt ∗ f ) (E (−t) x)| e−C|x|2dx

)
dt. (4.26)
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Applying Hölder inequality with q−1 + p−1 = 1 and Young’s inequality we get:∫
RN
|(kt ∗ f ) (E (−t) x)| e−C|x|2dx

E (−t) x = y; x = E (t) y; dx = e−t Tr Bdy

= e−t Tr B
∫
RN
|(kt ∗ f ) (y)| e−C|E(t)y|2dy

≤ e−t Tr B ‖kt ∗ f ‖Lp(RN)
∥∥∥∥e−C|E(t)y|2

∥∥∥∥
Lq(RN)

≤ c (q,T ) e−t Tr B ‖ f ‖Lp(RN) ‖kt‖L1(RN) (4.27)

and inserting (4.27) into (4.26) we have∫ T

0

(∫
RN
|u (x, t)| e−C|x|2dx

)
dt

≤

∫ T

0

e−t Tr B

(4π)N/2 √det C (t)
c (q,T ) e−t Tr B ‖ f ‖Lp(RN)

∫
RN

e−
1
4 xT C′(t)xdxdt

= c (q,T ) ‖ f ‖Lp(RN)

∫ T

0

∫
RN

e−t Tr B

(4π)N/2 √det C (t)
e−t Tr Be−

1
4 xT C′(t)xdxdt

x = E (−t) w; dx = et Tr Bdw

= c (q,T ) ‖ f ‖Lp(RN)

∫ T

0

∫
RN

e−t Tr B

(4π)N/2 √det C (t)
e−

1
4 (E(−t)w)T C′(t)E(−t)wdwdt

= c (q,T ) ‖ f ‖Lp(RN)

∫ T

0

∫
RN

Γ (w, t; 0, 0) dwdt

= c (q,T ) ‖ f ‖Lp(RN)

∫ T

0
e−t Tr Bdt ≤ c (q,T ) ‖ f ‖Lp(RN)

by (4.8). Hence (1.16) still holds for every fixed C,T > 0.
(b) Assume that ∫

RN
| f (y)| e−α|y|

2
dy < ∞

for some α > 0 and, for T ∈ (0, 1) , β > 0 to be chosen later, let us bound:∫ T

0

(∫
RN
|u (x, t)| e−β|x|

2
dx

)
dt

≤

∫ T

0

(∫
RN

(
e−t Tr B

(4π)N/2 √det C (t)

∫
RN

e−
1
4 (x−E(t)y)T C(t)−1(x−E(t)y)

| f (y)| dy
)

e−β|x|
2
dx

)
dt

y = E (−t)
(
x − 2C (t)1/2 z

)
; dy = et Tr B2N det C (t)1/2 dz

=

∫ T

0

∫
RN

e−|z|
2

πN/2

(∫
RN

∣∣∣∣ f (
E (−t)

(
x − 2C (t)1/2 z

))∣∣∣∣ e−β|x|2dx
)

dzdt

E (−t)
(
x − 2C (t)1/2 z

)
= w; et Tr Bdx = dw
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=

∫ T

0

∫
RN

e−|z|
2

πN/2

(∫
RN

e−t Tr B | f (w)| e−β|E(t)w+2C(t)1/2z|
2

dw
)

dzdt

=

∫ T

0
e−t Tr B

∫
RN

e−|z|
2

πN/2 ·

·

(∫
RN
| f (w)| e−β

(
|E(t)w|2+4|C(t)1/2z|

2
+2(E(t)w)T C(t)1/2z

)
dw

)
dzdt

=

∫ T

0

e−t Tr B

πN/2

(∫
RN
| f (w)| e−β|E(t)w|2 ·

·

(∫
RN

e−|z|
2
e−4β|C(t)1/2z|

2

e−2β(E(t)w)T C(t)1/2zdz
)

dw
)

dt.

Next, for 0 < t < 1 we have, since ‖C (t)‖ ≤ ct,∣∣∣−2β (E (t) w)T C (t)1/2 z
∣∣∣ ≤ c1β |w|

√
t |z|

so that ∫ T

0

(∫
RN
|u (x, t)| e−β|x|

2
dx

)
dt

≤
e|Tr B|

πN/2

∫ T

0

(∫
RN
| f (w)| e−β|E(t)w|2

(∫
RN

e−|z|
2
ec1β|w|

√
t|z|dz

)
dw

)
dt.

Next, ∫
RN

e−|z|
2
ec1β|w|

√
t|z|dz = cn

∫ +∞

0
e−ρ

2+c1β|w|
√

tρρn−1dρ

≤ c
∫ +∞

0
e−

ρ2
2 +c1βρ

√
tdρ = cec2β

2t|w|2

and ∫ T

0

(∫
RN
|u (x, t)| e−β|x|

2
dx

)
dt ≤ c

∫ T

0

(∫
RN
| f (w)| e−β|E(t)w|2ec2β

2t|w|2dw
)

dt.

Since E (t) is invertible and E (0) = 1, for T small enough and t ∈ (0,T ) we have |E (t) w| ≥ 1
2 |w| so

that
e−β|E(t)w|2ec2β

2t|w|2 ≤ e−|w|
2β( 1

2−c2tβ).

We now fix β = 4α and then fix T small enough such that 1
2 − c2Tβ ≥ 1

4 , so that for t ∈ (0,T ) we have

e−|w|
2β( 1

2−c2tβ) ≤ e−|w|
2β( 1

2−c2Tβ) ≤ e−α|w|
2

and ∫ T

0

(∫
RN
|u (x, t)| e−β|x|

2
dx

)
dt ≤ c

∫ T

0

(∫
RN
| f (w)| e−α|w|

2
dw

)
dt < ∞.

So we are done. �
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The previous uniqueness property for the Cauchy problem also implies the following replication
property for the heat kernel:

Corollary 4.15. For every x, y ∈ RN and s < τ < t we have

Γ (x, t; y, s) =

∫
RN

Γ (x, t; z, τ) Γ (z, τ; y, s) dz.

Proof. Let

u (x, t) =

∫
RN

Γ (x, t; z, τ) Γ (z, τ; y, s) dz

f (z) = Γ (z, τ; y, s)

for y ∈ RN fixed, τ > s fixed. By Theorem 1.4, (i), f ∈ C0
∗

(
RN

)
. Hence by Theorem 4.11, point (iii), u

solves the Cauchy problem {
Lu (x, t) = 0 for t > τ
u (x, τ) = Γ (x, τ; y, s)

where the initial datum is assumed continuously, uniformly as t → τ. Since v (x, t) = Γ (x, t; y, s) solves
the same Cauchy problem, by Theorem 4.13 the assertion follows. �
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