We investigate the boundary Harnack principle for uniformly elliptic operators in divergence form in Hölder domains of exponent $ \alpha > 0 $. We also deal with operators in nondivergence form with coefficient that remain constant in the graph direction.
Citation: Daniela De Silva, Ovidiu Savin. On the boundary Harnack principle in Hölder domains[J]. Mathematics in Engineering, 2022, 4(1): 1-12. doi: 10.3934/mine.2022004
We investigate the boundary Harnack principle for uniformly elliptic operators in divergence form in Hölder domains of exponent $ \alpha > 0 $. We also deal with operators in nondivergence form with coefficient that remain constant in the graph direction.
[1] | A. Ancona, Principe de Harnack a la frontiere et theoreme de Fatou pour un operateur elliptique dons un domaine lipschitzien, Ann. Inst. Fourier, 28 (1978), 169–213. doi: 10.5802/aif.720 |
[2] | R. Banuelos, R. F. Bass, K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195–200. |
[3] | R. F. Bass, K. Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. Math., 134 (1991), 253–276. doi: 10.2307/2944347 |
[4] | R. F. Bass, K. Burdzy, The boundary Harnack principle for non-divergence form elliptic operators, J. London Math. Soc., 50 (1994), 157–169. doi: 10.1112/jlms/50.1.157 |
[5] | L. Caffarelli, E. Fabes, S. Mortola, S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30 (1981), 621–640. doi: 10.1512/iumj.1981.30.30049 |
[6] | B. Dahlberg, On estimates of harmonic measure, Arch. Ration. Mech. Anal., 65 (1977), 272–288. |
[7] | D. De Silva, O. Savin, A short proof of boundary Harnack principle, J. Differ. Equations, 269 (2020), 2419–2429. doi: 10.1016/j.jde.2020.02.004 |
[8] | F. Ferrari, On boundary behavior of harmonic functions in Hölder domains, J. Fourier Anal. Appl., 4 (1988), 447–461. |
[9] | D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, 2 Eds., Berlin: Springer-Verlag, 1983. |
[10] | D. S. Jerison, C. E. Kenig, Boundary behavior of Harmonic functions in non-tangentially accessible domains, Adv. Math., 46 (1982), 80–147. doi: 10.1016/0001-8708(82)90055-X |
[11] | J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Commun. Pure Appl. Math., 25 (1972), 247–255. doi: 10.1002/cpa.3160250303 |
[12] | H. Kim, M. V. Safonov, Boundary Harnack principle for second order elliptic equations with unbounded drift, J. Math. Sci., 179 (2011), 127. doi: 10.1007/s10958-011-0585-2 |
[13] | N. V. Krylov, Boundedly inhomogenous elliptic and parabolic equations in a domain, Izvestia Akad. Nauk. SSSR, 46 (1983), 487–523. |
[14] | J. M. G. Wu, Comparison of kernel functions, boundary Harnack principle, and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier Grenoble, 28 (1978), 147–167. doi: 10.5802/aif.719 |