N | HOC-ADI Method [20] | FVM [7] | Present method | C.R. |
4 \times 4 | 6.12E-3 | 4.92E-2 | 9.892E-3 | – |
6 \times 6 | 1.68E-3 | 2.05E-2 | 4.319E-4 | 3.8613 |
8 \times 8 | 7.69E-4 | 1.27E-2 | 9.758E-6 | 6.5873 |
10 \times 10 | 4.40E-4 | 9.20E-3 | 1.577E-7 | 9.2432 |
We present a new time discretization scheme adapted to the structure of GENERIC systems. The scheme is based on incremental minimization and is therefore variational in nature. The GENERIC structure of the scheme provides stability and conditional convergence. We show that the scheme can be rigorously implemented in the classical case of the damped harmonic oscillator. Numerical evidence is collected, illustrating the performance of the method and, in particular, the conservation of the energy at the discrete level.
Citation: Ansgar Jüngel, Ulisse Stefanelli, Lara Trussardi. A minimizing-movements approach to GENERIC systems[J]. Mathematics in Engineering, 2022, 4(1): 1-18. doi: 10.3934/mine.2022005
[1] | Huan Xu, Tao Yu, Fawaz E. Alsaadi, Madini Obad Alassafi, Guidong Yu, Jinde Cao . Some spectral sufficient conditions for a graph being pancyclic. AIMS Mathematics, 2020, 5(6): 5389-5401. doi: 10.3934/math.2020346 |
[2] | Wafaa Fakieh, Zakeiah Alkhamisi, Hanaa Alashwali . On the Aα−-spectra of graphs and the relation between Aα- and Aα−-spectra. AIMS Mathematics, 2024, 9(2): 4587-4603. doi: 10.3934/math.2024221 |
[3] | Maria Adam, Dimitra Aggeli, Aikaterini Aretaki . Some new bounds on the spectral radius of nonnegative matrices. AIMS Mathematics, 2020, 5(1): 701-716. doi: 10.3934/math.2020047 |
[4] | He Song, Longmin Wang, Kainan Xiang, Qingpei Zang . The continuity of biased random walk's spectral radius on free product graphs. AIMS Mathematics, 2024, 9(7): 19529-19545. doi: 10.3934/math.2024952 |
[5] | Ximing Fang . The simplified modulus-based matrix splitting iteration method for the nonlinear complementarity problem. AIMS Mathematics, 2024, 9(4): 8594-8609. doi: 10.3934/math.2024416 |
[6] | Jianwei Du, Xiaoling Sun . On symmetric division deg index of trees with given parameters. AIMS Mathematics, 2021, 6(6): 6528-6541. doi: 10.3934/math.2021384 |
[7] | Yufei Huang, Hechao Liu . Bounds of modified Sombor index, spectral radius and energy. AIMS Mathematics, 2021, 6(10): 11263-11274. doi: 10.3934/math.2021653 |
[8] | Xu Li, Rui-Feng Li . Shift-splitting iteration methods for a class of large sparse linear matrix equations. AIMS Mathematics, 2021, 6(4): 4105-4118. doi: 10.3934/math.2021243 |
[9] | Qin Zhong, Ling Li . Notes on the generalized Perron complements involving inverse N0-matrices. AIMS Mathematics, 2024, 9(8): 22130-22145. doi: 10.3934/math.20241076 |
[10] | Ali Raza, Mobeen Munir, Tasawar Abbas, Sayed M Eldin, Ilyas Khan . Spectrum of prism graph and relation with network related quantities. AIMS Mathematics, 2023, 8(2): 2634-2647. doi: 10.3934/math.2023137 |
We present a new time discretization scheme adapted to the structure of GENERIC systems. The scheme is based on incremental minimization and is therefore variational in nature. The GENERIC structure of the scheme provides stability and conditional convergence. We show that the scheme can be rigorously implemented in the classical case of the damped harmonic oscillator. Numerical evidence is collected, illustrating the performance of the method and, in particular, the conservation of the energy at the discrete level.
In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:
{∂u∂t=k(∂2u∂x2+∂2u∂y2+∂2u∂z2),t∈[0,1],x∈[0,a],y∈[0,b],z∈[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. | (1.1) |
Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.
Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.
Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].
Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.
The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.
In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.
The traditional Legendre polynomial is the orthogonal function system on [−1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2∈R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).
p0(x)=1,p1(x)=2(x−c1)c2−c1−1,pi+1(x)=2i+1i+1[2(x−c1)c2−c1−1]pi(x)−ii+1pi−1(x),i=1,2,⋯. | (2.1) |
Obviously, {pi(x)}∞i=0 is a system of orthogonal functions on L2[c1,c2], and
∫c2c1pi(x)pj(x)dx={c2−c12i+1,i=j,0,i≠j. |
Let Li(x)=√2i+1c2−c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.
Lemma 2.1. [29] {Li(x)}∞i=0 is a orthonormal basis in L2[c1,c2].
Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.
v(t,x,y,z)=u(t,x,y,z)−ϕ(x,y,z). |
Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.
In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:
{∂2u∂x2+∂2u∂y2+∂2u∂z2−∂u∂t=f(x,y,z),t∈[0,1],x∈[0,a],y∈[0,b],z∈[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. | (2.2) |
The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.
Remember AC represents the space of absolutely continuous functions.
Definition 2.1. W1[0,1]={u(t)|u∈AC,u(0)=0,u′∈L2[0,1]}, and
⟨u,v⟩W1=∫10u′v′dt,u,v∈W1. |
Let c1=0,c2=1, so {Ti(t)}∞i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=n∑i=0citi. And {JTn(t)}∞n=0 is the orthonormal basis of W1[0,1], where
JTn(t)=n∑i=0citi+1i+1. |
Definition 2.2. W2[0,a]={u(x)|u′∈AC,u(0)=u(a)=0,u″∈L2[0,a]}, and
⟨u,v⟩W2=∫a0u″v″dx,u,v∈W2. |
Similarly, {Pn(x)}∞n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=n∑j=0djxj, where dj∈R.
Let
JPn(x)=n∑j=0djxj+2−aj+1x(j+1)(j+2), |
obviously, {JPn(x)}∞n=0 is the orthonormal basis of W2[0,a].
We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.
{∂2u∂x2−∂u∂t=f(x),t∈[0,1],x∈[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. | (3.1) |
Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.
Definition 3.1. W(D)={u(t,x)|∂u∂x∈CC,(t,x)∈D,u(0,x)=0,u(t,0)=u(t,a)=0,∂3u∂t∂x2∈L2(D)}, and
⟨u,v⟩W(D)=∬D∂3u∂t∂x2∂3v∂t∂x2dσ. |
Theorem 3.1. W(D) is an inner product space.
Proof. ∀u(t,x)∈W(D), if ⟨u,u⟩W(D)=0, means
∬D[∂3u(t,x)∂t∂x2]2dσ=0, |
and it implies
∂3u(t,x)∂t∂x2=∂∂t(∂2u(t,x)∂x2)=0. |
Combined with the conditions of W(D), we can get u=0.
Obviously, W(D) satisfies other conditions of inner product space.
Theorem 3.2. ∀u∈W(D),v1(t)v2(x)∈W(D), then
⟨u(t,x),v1(t)v2(x)⟩W(D)=⟨⟨u(t,x),v1(t)⟩W1,v2(x)⟩W2. |
Proof.⟨u(t,x),v1(t)v2(x)⟩W(D)=∬D∂3u(t,x)∂t∂x2∂3[v1(t)v2(x)]∂t∂x2dσ=∬D∂2∂x2[∂u(t,x)∂t]∂v1(t)∂t∂2v2(x)∂x2dσ=∫a0∂2∂x2⟨u(t,x),v1(t)⟩W1∂2v2(x)∂x2dx=⟨⟨u(t,x),v1(t)⟩W1,v2(x)⟩W2. |
Corollary 3.1. ∀u1(t)u2(x)∈W(D),v1(t)v2(x)∈W(D), then
⟨u1(t)u2(x),v1(t)v2(x)⟩W(D)=⟨u1(t),v1(t)⟩W1⟨u2(x),v2(x)⟩W2. |
Let
ρij(t,x)=JTi(t)JPj(x),i,j∈N. |
Theorem 3.3. {ρij(t,x)}∞i,j=0is an orthonormal basis inW(D).
Proof. ∀ρij(t,x),ρlm(t,x)∈W(D),i,j,l,m∈N,
⟨ρij(t,x),ρlm(t,x)⟩W(D)=⟨JTi(t)JPj(x),JTl(t)JPm(x)⟩W(D)=⟨JTi(t),JTl(t)⟩W1⟨JPj(x),JPm(x)⟩W2. |
So
⟨ρij(t,x),ρlm(t,x)⟩W(D)={1,i=l,j=m,0,others. |
In addition, ∀u∈W(D), if ⟨u,ρij⟩W(D)=0, means
⟨u(t,x),JTi(t)JPj(x)⟩W(D)=⟨⟨u(t,x),JTi(t)⟩W1,JPj(x)⟩W2=0. |
Note that {JPj(x)}∞j=0 is the complete system of W2, so ⟨u(t,x),JTi(t)⟩W1=0.
Similarly, we can get u(t,x)=0.
Let L:W(D)→L2(D),
Lu=∂2u∂x2−∂u∂t. |
So, Eq (3.1) can be simplified as
Lu=f. | (3.2) |
Definition 3.2. ∀ε>0, if u∈W(D) and
||Lu−f||2L(D)<ε, | (3.3) |
then u is called the ε−best approximate solution for Lu=f.
Theorem 3.4. Any ε>0, there is N∈N, when n>N, then
un(t,x)=n∑i=0n∑j=0η∗ijρij(t,x) | (3.4) |
is the ε−best approximate solution for Lu=f, where η∗ij satisfies
||n∑i=0n∑j=0η∗ijLρij−f||2L2(D)=mindij||n∑i=0n∑j=0dijLρij−f||2L2(D),dij∈R,i,j∈Nn. |
Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=∞∑i=0∞∑j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.
Note that L is a bounded operator [30], hence, any ε>0, there is N∈N, when n>N, then
||∞∑i=n+1∞∑j=n+1ηijρij||2W(D)<ε||L||2. |
So,
||n∑i=0n∑j=0η∗ijLρij−f||2L2(D)=mindij||n∑i=0n∑j=0dijLρij−f||2L2(D)≤||n∑i=0n∑j=0ηijLρij−f||2L2(D)=||n∑i=0n∑j=0ηijLρij−Lu||2L2(D)=||∞∑i=n+1∞∑j=n+1ηijLρij||2L2(D)≤||L||2||∞∑i=n+1∞∑j=n+1ηijρij||2W(D)< ε. |
For obtain un(t,x), we need to find the coefficients η∗ij by solving Eq (3.5).
min{ηij}ni,j=0J=‖Lun−f‖2L2(D) | (3.5) |
In addition,
J=‖Lun−f‖2L2(D)=⟨Lun−f,Lun−f⟩L2(D)=⟨Lun,Lun⟩L2(D)−2⟨Lun,f⟩L2(D)+⟨f,f⟩L2(D)=n∑i=0n∑j=0n∑l=0n∑m=0ηijηlm⟨Lρij,Lρlm⟩L2(D)−2n∑i=0n∑j=0ηij⟨Lρij,f⟩L2(D)+⟨f,f⟩L2(D). |
So,
∂J∂ηij=2n∑l=0n∑m=0ηlm⟨Lρij,Lρlm⟩L2(D)−2ηij⟨Lρij,f⟩L2(D),i,j∈Nn |
and the equations ∂J∂ηij=0,i,j∈Nn can be simplified to
Aη=B, | (3.6) |
where
A=(⟨Lρij,Lρlm⟩L2(D))N×N,N=(n+1)2,η=(ηij)N×1,B=(⟨Lρij,f⟩L2(D))N×1. |
Theorem 3.5. Aη=B has a unique solution.
Proof. It can be proved that A is nonsingular. Let η satisfy Aη=0, that is,
n∑i=0n∑j=0⟨Lρij,Lρlm⟩L2(D)ηij=0,l,m∈Nn. |
So, we can get the following equations:
n∑i=0n∑j=0⟨ηijLρij,ηlmLρlm⟩L2(D)=0,l,m∈Nn. |
By adding the above (n+1)2 equations, we can get
⟨n∑i=0n∑j=0ηijLρij,n∑l=0n∑m=0ηlmLρlm⟩L2(D)=‖n∑i=0n∑j=0ηijLρij‖2L2(D)=0. |
So,
n∑i=0n∑j=0ηijLρij=0. |
Note that L is reversible. Therefore, ηij=0,i,j∈Nn.
According to Theorem 3.5, un(t,x) can be obtained by substituting η=A−1B into un=n∑i=0n∑j=0ηijρij(t,x).
{∂2u∂x2+∂2u∂y2−∂u∂t=f(x,y),t∈[0,1],x∈[0,a],y∈[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. | (3.7) |
Similar to definition 2.2, we can give the definition of linear space W3[0,b] as follows:
W3[0,b]={u(y)|u′∈AC,y∈[0,b],u(0)=u(b)=0,u″∈L2[0,b]}. |
Similarly, let {Qn(y)}∞n=0 is the orthonormal basis in L2[0,b], and denote Qn(y)=n∑k=0qkyk.
Let
JQn(y)=n∑k=0qkyk+2−bk+1y(k+1)(k+2), |
it is easy to prove that {JQn(y)}∞n=0 is the orthonormal basis of W3[0,b].
Let Ω=[0,1]×[0,a]×[0,b]. Now we define a three-dimensional space.
Definition 3.3 W(Ω)={u(t,x,y)|∂2u∂x∂y∈CC,(t,x,y)∈Ω,u(0,x,y)=0, u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0,∂5u∂t∂x2∂y2∈L2(Ω)}, and
⟨u,v⟩W(Ω)=∭Ω∂5u∂t∂x2∂y2∂5v∂t∂x2∂y2dΩ,u,v∈W(Ω). |
Similarly, we give the following theorem without proof.
Theorem 3.6. {ρijk(t,x,y)}∞i,j,k=0is an orthonormal basis ofW(Ω), where
ρijk(t,x,y)=JTi(t)JPj(x)JQk(y),i,j,k∈Nn. |
Therefore, we can get un as
un(t,x,y)=n∑i=0n∑j=0n∑k=0ηijkρijk(t,x,y), | (3.8) |
according to the theory in Section 3.1, we can find all ηijk,i,j,k∈Nn.
{∂2u∂x2+∂2u∂y2+∂2u∂z2−∂u∂t=f(x,y,z),t∈[0,1],x∈[0,a],y∈[0,b],z∈[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. | (3.9) |
By Lemma 2.1, note that the orthonormal basis of L2[0,c] is {Rn(z)}∞n=0, and denote Rn(z)=n∑m=0rmzm, where rm is the coefficient of polynomial Rn(z).
We can further obtain the orthonormal basis JRn(z)=n∑m=0rmzm+2−cm+1z(m+1)(m+2) of W4[0,c], where
JRn(z)=n∑m=0rmzm+2−cm+1z(m+1)(m+2), |
and
W4[0,c]={u(z)|u′∈AC,z∈[0,c],u(0)=u(c)=0,u″∈L2[0,c]}. |
Let G=[0,1]×[0,a]×[0,b]×[0,c]. Now we define a four-dimensional space.
Definition 3.4. W(G)={u(t,x,y,z)|∂3u∂x∂y∂z∈CC,(t,x,y,z)∈G,u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0, u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0,∂7u∂t∂x2∂y2∂z2∈L2(G)}, and
⟨u,v⟩W(G)=⨌ |
where dG = dtdxdydz.
Similarly, we give the following theorem without proof.
Theorem 3.7. \{\rho_{ijk}(t, x, y, z)\}_{i, j, k, m = 0}^\infty \mathit{\mbox{is an orthonormal basis of}}\; W(G) , where
\rho_{ijkm}(t,x,y,z) = JT_i(t)JP_j(x)JQ_k(y)JR_m(z),\; \; i,j,k,m\in \mathbb{N}. |
Therefore, we can get u_n as
\begin{equation} u_n(t,x,y,z) = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{k = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{ijkm}\rho_{ijkm}(t,x,y,z), \end{equation} | (3.10) |
according to the theory in Section 3.1, we can find all \eta_{ijkm}, \; \; i, j, k, m\in\mathbb{N}_n.
Suppose u(t, x) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}\eta_{ij}\rho_{ij}(t, x) is the exact solution of Eq (3.5). Let P_{N_1, N_2}u(t, x) = \sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2} \eta_{ij}T_i(t)P_j(x) is the projection of u in L(D) .
Theorem 4.1. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , and N_1 > r, N_2 > l , then, the error estimate of P_{N_1, N_2}u(t, x) is
||u-P_{N_1,N_2}u||_{L^2(D)}^2 \leq C N^{-\alpha}, |
where C is a constant, N = min\{N_1, N_2\}, \alpha = min\{r, l\}.
Proof. According to the lemma in ref. [29], it follows that
||u-u_{N_1}||_{L_t^2[0,1]}^2 = ||u-P_{t,N_1}u||_{L_t^2[0,1]}^2\leq C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u(t,x) ||_{L_t^2[0,1]}^2, |
where u_{N_1} = P_{t, N_1}u represents the projection of u on variable t in L^2[0, 1] , and ||\cdot||_{L_t^2[0, 1]} represents the norm of (\cdot) with respect to variable t in L^2[0, 1] .
By integrating both sides of the above formula with respect to x , we can get
\begin{equation*} \begin{array}{lll} ||u-u_{N_1}||_{L^2(D)}^2 &\leq & C_1 N_1^{-r} \int_0^a ||\dfrac{\partial^r}{\partial t^r}u||_{L_t^2[0,1]}^2 dx\\ & = & C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. \end{array} \end{equation*} |
Moreover,
\begin{equation*} \begin{array}{lll} u(t,x)-u_{N_1}(t,x) & = & \sum\limits_{i = N_1+1}^{\infty} \langle u, T_i\rangle _{L_t^2[0,1]}T_i(t)\\ & = & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty} \langle \langle u, T_i\rangle _{L_t^2[0,1]}, P_j\rangle_{L_x^2[0,a]} P_j(x)T_i(t). \end{array} \end{equation*} |
According to the knowledge in Section 3,
||u-u_{N_1}||_{L^2(D)}^2 = \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2, |
where c_{ij} = \langle \langle u, T_i\rangle _{L_t^2[0, 1]}, P_j\rangle_{L_x^2[0, a]} .
Therefore,
\sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2\leq C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. |
Similarly,
\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\leq C_2 N_2^{-l}||\dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2. |
In conclusion,
\begin{equation*} \begin{array}{lll} ||u-P_{N_1,N_2}u||_{L^2(D)}^2 & = & ||(\sum\limits_{i = 0}^{\infty} \sum\limits_{j = 0}^{\infty}-\sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2})c_{ij}^2 T_i(t)P_j(x)||_{L^2(D)}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{N_2}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N2+1}^{\infty}c_{ij}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\\ &\leq & C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2 + C_2 N_2^{-l}|| \dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2\\ &\leq & C N^{-\alpha}. \end{array} \end{equation*} |
Theorem 4.2. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , u_n(t, x) is the \varepsilon- best approximate solution of Eq (3.2), and n > max\{r, l\} , then,
||u-u_n||_{W(D)}^2 \leq C n^{-\alpha}. |
where C is a constant, \alpha = min\{r, l\}.
Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.
\begin{equation*} ||u-u_n||_{W(D)}^2 \leq ||u-P_{N_1,N_2}u||_{L^2(D)}^2\leq C n^{-\alpha}. \end{equation*} |
So, the \varepsilon- approximate solution has \alpha convergence order, and the convergence rate is related to n , where represents the number of bases, and the convergence order can calculate as follows.
\begin{equation} C.R. = log_{\frac{n_2}{n_1}}\frac{max|e_{n_1}|}{max|e_{n_2}|}. \end{equation} | (4.1) |
Where n_i, i = 1, 2 represents the number of orthonormal base elements.
Here, three examples are compared with other algorithms. N represents the number of orthonormal base elements. For example, N = 10 \times 10 , which means that we use the orthonormal system \{\rho_{ij}\}_{i, j = 0}^{10} of W(D) for approximate calculation, that is, we take the orthonormal system \{JT_i(t)\}_{i = 0}^{10} and \{JP_j(x)\}_{j = 0}^{10} to construct the \varepsilon- best approximate solution.
Example 5.1. Consider the following one-demensional heat conduction system [7,20]
\begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx},\; \; (t,x)\in [0,1]\times[0,2\pi],\\ u(0,x) = \sin(x),\\ u(t,0) = u(t,2\pi) = 0. \end{array} \right. \end{eqnarray*} |
The exact solution of Ex. 5.1 is e^{-t}\sin x .
In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of u_n . With the increase of N , the errors between the two surfaces will be smaller.
N | HOC-ADI Method [20] | FVM [7] | Present method | C.R. |
4 \times 4 | 6.12E-3 | 4.92E-2 | 9.892E-3 | – |
6 \times 6 | 1.68E-3 | 2.05E-2 | 4.319E-4 | 3.8613 |
8 \times 8 | 7.69E-4 | 1.27E-2 | 9.758E-6 | 6.5873 |
10 \times 10 | 4.40E-4 | 9.20E-3 | 1.577E-7 | 9.2432 |
|u-u_n| | t=0.1 | t=0.3 | t=0.5 | t=0.7 | t=0.9 |
x=\frac{\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
x=\frac{3\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{7\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{9\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
Example 5.2. Consider the following two-demensional heat conduction system [20,21]
\begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx}+u_{yy},\; \; (t,x,y)\in [0,1]\times[0,1]\times[0,1],\\ u(0,x,y) = \sin(\pi x)\sin(\pi y),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*} |
The exact solution of Ex. 5.2 is u = e^{-2\pi^2 t}\sin(\pi x)\sin(\pi y) .
Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the x- axis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.
N | CCD-ADI Method [21] | RHOC-ADI Method [20] | Present method | C.R. |
4 \times 4 \times 4 | 8.820E-3 | 3.225E-2 | 5.986E-3 | – |
8 \times 8 \times 8 | 6.787E-5 | 1.969E-3 | 3.126E-5 | 2.52704 |
|u-u_n| | y=0.1 | y=0.3 | y=0.5 | y=0.7 | y=0.9 |
x=0.1 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
x=0.3 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.5 | 2.421E-5 | 6.347E-5 | 7.839E-5 | 6.347E-5 | 2.421E-5 |
x=0.7 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.9 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
Example 5.3. Consider the three-demensional problem as following:
\begin{eqnarray*} \left\{ \begin{array}{l} (\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2})u_t = u_{xx}+u_{yy}+u_{zz},\; \; (t,x,y,z)\in [0,1]\times[0,a]\times[0,b]\times[0,c],\\ u(0,x,y) = \sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*} |
The exact solution of Ex. 5.3 is u = e^{-\pi^2t}\sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}) .
Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the \varepsilon- best approximate solution and the real solution when the boundary time t = 1 .
|u-u_n| | y=0.2 | y=0.6 | y=1.0 | y=1.4 | y=1.8 |
x=0.1 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
x=0.3 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.350E-3 | 2.893E-3 |
x=0.5 | 3.482E-3 | 8.838E-3 | 1.059E-2 | 8.838E-3 | 3.482E-3 |
x=0.7 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.735E-3 | 2.893E-3 |
x=0.9 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.
This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).
The authors declare no conflict of interest.
[1] | L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246. |
[2] | L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, 2 Eds., Basel: Birkhäuser Verlag, 2008. |
[3] |
F. Auricchio, E. Boatti, A. Reali, U. Stefanelli, Gradient structures for the thermomechanics of shape-memory materials, Comput. Methods Appl. Mech. Engrg., 299 (2016), 440–469. doi: 10.1016/j.cma.2015.11.005
![]() |
[4] |
A. Bacho, E. Emmrich, A. Mielke, An existence result and evolutionary \Gamma-convergence for perturbed gradient systems, J. Evol. Equ., 19 (2019), 479–522. doi: 10.1007/s00028-019-00484-x
![]() |
[5] |
P. Betsch, M. Schiebl, GENERIC-based formulation and discretization of initial boundary value problems for finite strain thermoelasticity, Comput. Mech., 65 (2020), 503–531. doi: 10.1007/s00466-019-01781-5
![]() |
[6] | P. Betsch, M. Schiebl, Energy–momentum–entropy consistent numerical methods for large strain thermoelasticity relying on the GENERIC formalism, Internat. J. Numer. Methods Engrg., 119 (2019), 1216–1244. |
[7] | H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Amsterdam: North-Holland, 1973. |
[8] |
E. Celledoni, V. Grimm, R. McLachlan, D. McLaren, D. O'Neale, B. Owren, et al., Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method, J. Comput. Phys., 231 (2012), 6770–6789. doi: 10.1016/j.jcp.2012.06.022
![]() |
[9] |
S. Conde Martín, P. Betsch, J. C. García Orden, A temperature based thermodynamically consistent integration scheme for discrete thermo-elastodynamics, Commun. Nonlinear Sci. Numer. Simul., 32 (2016), 63–80. doi: 10.1016/j.cnsns.2015.08.006
![]() |
[10] |
S. Conde Martín, J. C. García Orden, On energy–entropy– momentum integration methods for discrete thermo-viscoelastodynamics, Comput. Struct., 181 (2017), 3–20. doi: 10.1016/j.compstruc.2016.05.010
![]() |
[11] | E. De Giorgi, A. Marino, M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180–187. |
[12] |
P. Dondl, T. Frenzel, A. Mielke, A gradient system with a wiggly energy and relaxed EDP-convergence, ESAIM Control Optim. Calc. Var., 25 (2019), 68. doi: 10.1051/cocv/2018058
![]() |
[13] |
M. H. Duong, Formulation of the relativistic heat equation and the relativistic kinetic Fokker-Planck equations using GENERIC, Phys. A, 439 (2015), 34–43. doi: 10.1016/j.physa.2015.07.019
![]() |
[14] |
M. H. Duong, M. A. Peletier, J. Zimmer, GENERIC formalism of a Vlasov–Fokker–Planck equation and connection to large-deviation principles, Nonlinearity, 26 (2013), 2951–2971. doi: 10.1088/0951-7715/26/11/2951
![]() |
[15] |
J. C. García Orden, I. Romero, Energy-Entropy-Momentum integration of discrete thermo-visco-elastic dynamics, Eur. J. Mech. Solids, 32 (2012), 76–87. doi: 10.1016/j.euromechsol.2011.09.007
![]() |
[16] |
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlin. Sci., 6 (1996), 449–467. doi: 10.1007/BF02440162
![]() |
[17] |
O. Gonzalez, Exact energy-momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 190 (2000), 1763–1783. doi: 10.1016/S0045-7825(00)00189-4
![]() |
[18] | M. Grmela, H. C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E, 56 (1997), 6620–6632. |
[19] | E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration, 2 Eds., Berlin: Springer, 2006. |
[20] |
M. Hoyuelos, GENERIC framework for the Fokker-Planck equation, Phys. A, 442 (2016), 350–358. doi: 10.1016/j.physa.2015.09.035
![]() |
[21] |
M. Hütter, T. A. Tervoort, Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective, J. Non-Newton. Fluid., 152 (2008), 45–52. doi: 10.1016/j.jnnfm.2007.10.009
![]() |
[22] |
M. Hütter, B. Svendsen, On the formulation of continuum thermodynamic models for solids as general equations for non-equilibrium reversible–irreversible coupling, J. Elast., 104 (2011), 357–368. doi: 10.1007/s10659-011-9327-4
![]() |
[23] |
M. Hütter, B. Svendsen, Thermodynamic model formulation for viscoplastic solids as general equations for nonequilibrium reversible–irreversible coupling, Contin. Mech. Thermodyn., 24 (2012), 211–227. doi: 10.1007/s00161-011-0232-7
![]() |
[24] |
A. Jelić, M. Hütter, H. C. Öttinger, Dissipative electromagnetism from a nonequilibrium thermodynamics perspective, Phys. Rev. E, 74 (2006), 041126. doi: 10.1103/PhysRevE.74.041126
![]() |
[25] | A. Jüngel, U. Stefanelli, L. Trussardi, Two structure-preserving time discretizations for gradient flows, Appl. Math. Optim., 80 (2020), 733–764. |
[26] |
R. C. Kraaij, A. Lazarescu, C. Maes, M. Peletier, Fluctuation symmetry leads to GENERIC equations with non-quadratic dissipation, Stochastic Process. Appl., 130 (2020), 139–170. doi: 10.1016/j.spa.2019.02.001
![]() |
[27] |
R. Kraaij, A. Lazarescu, C. Maes, M. Peletier, Deriving GENERIC from a generalized fluctuation symmetry, J. Stat. Phys., 170 (2018), 492–508. doi: 10.1007/s10955-017-1941-5
![]() |
[28] |
M. Krüger, M. Groß, P. Betsch, An energy–entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua, ZAMM Z. Angew. Math. Mech., 96 (2016), 141–178. doi: 10.1002/zamm.201300268
![]() |
[29] | M. Liero, A. Mielke, M. A. Peletier, D. R. M. Renger, On microscopic origins of generalized gradient structures, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1–35. |
[30] |
R. McLachlan, G. Quispel, N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. R. Soc. Lond. A, 357 (1999), 1021–1045. doi: 10.1098/rsta.1999.0363
![]() |
[31] |
A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC, Contin. Mech. Thermodyn., 23 (2011), 233–256. doi: 10.1007/s00161-010-0179-0
![]() |
[32] | A. Mielke, Dissipative quantum mechanics using GENERIC, In: Proc. of the conference on recent trends in dynamical systems, Springer, 2013,555–585. |
[33] |
A. Mielke, A. Montefusco, M. Peletier, Exploring families of energy-dissipation landscapes via tilting–three types of EDP convergence, Contin. Mech. Thermodyn., 33 (2021), 611–637. doi: 10.1007/s00161-020-00932-x
![]() |
[34] |
A. Mielke, R. Rossi, G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36–80. doi: 10.1051/cocv/2010054
![]() |
[35] |
A. Montefusco, F. Consonni, G. Beretta, Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics, Phys. Rev. E, 91 (2015), 042138. doi: 10.1103/PhysRevE.91.042138
![]() |
[36] | B. S. Mordukhovich, Variational analysis and generalized differentiation. I. Basic theory, Berlin: Springer-Verlag, 2006. |
[37] | H. C. Öttinger, Beyond equilibrium thermodynamics, New Jersey: John Wiley, 2005. |
[38] |
H. C. Öttinger, Generic integrators: structure preserving time integration for thermodynamic systems, J. Non-Equil. Thermody., 43 (2018), 89–100. doi: 10.1515/jnet-2017-0034
![]() |
[39] |
D. Portillo, J. C. García Orden, I. Romero, Energy–entropy– momentum integration schemes for general discrete non-smooth dissipative problems in thermomechanics, Internat. J. Numer. Methods Engrg., 112 (2017), 776–802. doi: 10.1002/nme.5532
![]() |
[40] | L. Portinale, U. Stefanelli, Penalization via global functionals of optimal-control problems for dissipative evolution, Adv. Math. Sci. Appl., 28 (2019), 425–447. |
[41] |
G. Quispel, D. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A-Math. Theor., 41 (2008), 045206. doi: 10.1088/1751-8113/41/4/045206
![]() |
[42] |
T. Roche, R. Rossi, U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence, SIAM J. Control Optim., 52 (2014), 1071–1107. doi: 10.1137/130909391
![]() |
[43] |
I. Romero, Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems, Internat. J. Numer. Methods Engrg., 79 (2009), 706–732. doi: 10.1002/nme.2588
![]() |
[44] |
I. Romero, Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I: monolithic integrators and their application to finite strain thermoelasticity, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1841–1858. doi: 10.1016/j.cma.2010.02.014
![]() |
[45] |
I. Romero, Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part II: fractional step methods, Comput. Methods Appl. Mech. Engrg., 199 (2010), 2235–2248. doi: 10.1016/j.cma.2010.03.016
![]() |
[46] |
R. Rossi, G. Savaré, {Gradient flows of non convex functionals in Hilbert spaces and applications}, ESAIM Control Optim. Calc. Var., 12 (2006), 564–614. doi: 10.1051/cocv:2006013
![]() |
[47] | R. Rossi, A, Mielke, G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 97–169. |
[48] |
S. Sato, T. Matsuo, H. Suzuki, D. Furihata, A Lyapunov-type theorem for dissipative numerical integrators with adaptive time-stepping, SIAM J. Numer. Anal., 53 (2015), 2505–2518. doi: 10.1137/140996719
![]() |
[49] | J. Simon, Compact sets in the space L^p(0, T;B), Ann. Mat. Pura Appl. (4), 146 (1987), 65–96. |
[50] |
Y. Suzuki, M. Ohnawa, GENERIC formalism and discrete variational derivative method for the two-dimensional vorticity equation, J. Comput. Appl. Math., 296 (2016), 690–708. doi: 10.1016/j.cam.2015.10.018
![]() |
1. | Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091 | |
2. | Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294 | |
3. | Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066 | |
4. | Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9 |
|u-u_n| | t=0.1 | t=0.3 | t=0.5 | t=0.7 | t=0.9 |
x=\frac{\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
x=\frac{3\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{7\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{9\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
|u-u_n| | y=0.1 | y=0.3 | y=0.5 | y=0.7 | y=0.9 |
x=0.1 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
x=0.3 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.5 | 2.421E-5 | 6.347E-5 | 7.839E-5 | 6.347E-5 | 2.421E-5 |
x=0.7 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.9 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
|u-u_n| | y=0.2 | y=0.6 | y=1.0 | y=1.4 | y=1.8 |
x=0.1 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
x=0.3 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.350E-3 | 2.893E-3 |
x=0.5 | 3.482E-3 | 8.838E-3 | 1.059E-2 | 8.838E-3 | 3.482E-3 |
x=0.7 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.735E-3 | 2.893E-3 |
x=0.9 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
N | HOC-ADI Method [20] | FVM [7] | Present method | C.R. |
4 \times 4 | 6.12E-3 | 4.92E-2 | 9.892E-3 | – |
6 \times 6 | 1.68E-3 | 2.05E-2 | 4.319E-4 | 3.8613 |
8 \times 8 | 7.69E-4 | 1.27E-2 | 9.758E-6 | 6.5873 |
10 \times 10 | 4.40E-4 | 9.20E-3 | 1.577E-7 | 9.2432 |
|u-u_n| | t=0.1 | t=0.3 | t=0.5 | t=0.7 | t=0.9 |
x=\frac{\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
x=\frac{3\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{7\pi}{5} | 2.583E-8 | 7.130E-8 | 1.088E-7 | 1.390E-7 | 1.577E-7 |
x=\frac{9\pi}{5} | 1.195E-8 | 3.269E-8 | 5.009E-8 | 6.473E-8 | 8.127E-8 |
N | CCD-ADI Method [21] | RHOC-ADI Method [20] | Present method | C.R. |
4 \times 4 \times 4 | 8.820E-3 | 3.225E-2 | 5.986E-3 | – |
8 \times 8 \times 8 | 6.787E-5 | 1.969E-3 | 3.126E-5 | 2.52704 |
|u-u_n| | y=0.1 | y=0.3 | y=0.5 | y=0.7 | y=0.9 |
x=0.1 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
x=0.3 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.5 | 2.421E-5 | 6.347E-5 | 7.839E-5 | 6.347E-5 | 2.421E-5 |
x=0.7 | 1.963E-5 | 5.130E-5 | 6.347E-5 | 5.130E-5 | 1.963E-5 |
x=0.9 | 7.414E-6 | 1.963E-5 | 2.421E-5 | 1.963E-5 | 7.414E-6 |
|u-u_n| | y=0.2 | y=0.6 | y=1.0 | y=1.4 | y=1.8 |
x=0.1 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |
x=0.3 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.350E-3 | 2.893E-3 |
x=0.5 | 3.482E-3 | 8.838E-3 | 1.059E-2 | 8.838E-3 | 3.482E-3 |
x=0.7 | 2.893E-3 | 7.350E-3 | 8.820E-3 | 7.735E-3 | 2.893E-3 |
x=0.9 | 1.130E-3 | 2.873E-3 | 3.451E-3 | 2.873E-3 | 1.130E-3 |