Citation: Huan Xu, Tao Yu, Fawaz E. Alsaadi, Madini Obad Alassafi, Guidong Yu, Jinde Cao. Some spectral sufficient conditions for a graph being pancyclic[J]. AIMS Mathematics, 2020, 5(6): 5389-5401. doi: 10.3934/math.2020346
[1] | M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., 432 (2010), 2170-2173. doi: 10.1016/j.laa.2009.01.005 |
[2] | G. D. Yu, Y. Z. Fan, Spectral conditions for a graph to be hamilton-connected, Appl. Mech. Mater., 336-338 (2013), 2329-2334. |
[3] | M. Lu, H. Q. Liu, F. Tian, Spectral Radius and Hamiltonion graphs, Linear Algebra Appl., 437 (2012), 1670-1674. doi: 10.1016/j.laa.2012.05.021 |
[4] | Y. Z. Fan, G. D. Yu. Spectral Condition for a Graph to be Hamiltonian with respect to Normalized Laplacian, Mathematics, 2012. |
[5] | L. H. Feng, P. L. Zhang, H. Liu, et al. Spectral conditions for some graphical properties, Linear Algebra Appl., 524 (2017), 182-198. doi: 10.1016/j.laa.2017.03.006 |
[6] | B. L. Li, B. Ning, Spectral analogues of Erdos' and Moon-Moser's theorems on Hamilton cycles, Linear Multilinear Algebra, 64 (2016), 2252-2269. doi: 10.1080/03081087.2016.1151854 |
[7] | R. F. Liu, W. C. Shiu, J. Xue, Sufficient spectral conditions on Hamiltonian and traceable graphs, Linear Algebra Appl., 467 (2015), 254-266. doi: 10.1016/j.laa.2014.11.017 |
[8] | V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J., 66 (2016), 925-940. doi: 10.1007/s10587-016-0301-y |
[9] | G. D. Yu, G. X. Cai, M. L. Ye, et al. Energy conditions for Hamiltonicity of graphs, Discrete Dyn. Nature Soc., 53-56 (2014), 1-6. |
[10] | Q. N. Zhou, L. G. Wang, Y. Lu, Some sufficient conditions on hamiltonian and traceable graphs, Advances in Mathematics, 47 (2018), 31-40. |
[11] | G. D. Yu, T. Yu, A. X. Shu, et al. Some Sufficient Conditions on Pancyclic Graphs, Inf. Process. Lett., 2018. |
[12] | E. F. Schmeichel, S. L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvatal, J. Comb. Theory, 17 (1974), 22-34. doi: 10.1016/0095-8956(74)90043-4 |
[13] | H. Yuan. A bound on the spectral radius of graphs, Linear Algebra and Its Applications, 108 (1988), 135-139. |
[14] | G. D. Yu, Y. Z. Fan, Spectral Conditions for a Graph to be Hamilton-Connected, Applied Mech. Mater., 336-338 (2013), 2329-2334. |
[15] | J. A. Bondy, A. W. Ingleton, Pancyclic graphs I, J. Comb. Theory, 11 (1971), 80-84. doi: 10.1016/0095-8956(71)90016-5 |
[16] | R. Haggkvist, R. J. Faudree, R. H. Schelp, Pancyclic graphs Dconnected Ramsey number, Ars Comb.-Waterloo Winnipeg, 11 (1981), 37-49. |