Research article

Proof of a conjecture on the $ \epsilon $-spectral radius of trees

  • Received: 06 October 2022 Revised: 13 November 2022 Accepted: 16 November 2022 Published: 05 December 2022
  • MSC : 05C50

  • The $ \epsilon $-spectral radius of a connected graph is the largest eigenvalue of its eccentricity matrix. In this paper, we identify the unique $ n $-vertex tree with diameter $ 4 $ and matching number $ 5 $ that minimizes the $ \epsilon $-spectral radius, and thus resolve a conjecture proposed in [W. Wei, S. Li, L. Zhang, Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond, Discrete Math. 345 (2022) 112686].

    Citation: Jianping Li, Leshi Qiu, Jianbin Zhang. Proof of a conjecture on the $ \epsilon $-spectral radius of trees[J]. AIMS Mathematics, 2023, 8(2): 4363-4371. doi: 10.3934/math.2023217

    Related Papers:

  • The $ \epsilon $-spectral radius of a connected graph is the largest eigenvalue of its eccentricity matrix. In this paper, we identify the unique $ n $-vertex tree with diameter $ 4 $ and matching number $ 5 $ that minimizes the $ \epsilon $-spectral radius, and thus resolve a conjecture proposed in [W. Wei, S. Li, L. Zhang, Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond, Discrete Math. 345 (2022) 112686].



    加载中


    [1] A. Alhevaz, M. Baghipur, Y. Shang, Merging the spectral theories of distance Estrada and distance signless Laplacian Estrada indices of graphs, Mathematics, 7 (2019), 995. https://doi.org/10.3390/math7100995 doi: 10.3390/math7100995
    [2] M. Aouchiche, P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl., 458 (2014), 301–386. https://doi.org/10.1016/j.laa.2014.06.010 doi: 10.1016/j.laa.2014.06.010
    [3] R. B. Bapat, Graphs and matrices, 2 Eds., London: Springer, 2014. https://doi.org/10.1007/978-1-4471-6569-9
    [4] A. E. Brouwer, W. H. Haemers, Spectra of graphs, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1939-6
    [5] X. He, L. Lu, On the largest and least eigenvalues of eccentricity matrix of trees, Discrete Math., 345 (2022), 112662. https://doi.org/10.1016/j.disc.2021.112662 doi: 10.1016/j.disc.2021.112662
    [6] R. A. Horn, C. R. Johnson, Matrix analysis, 2 Eds., Cambridge: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139020411
    [7] I. Mahato, R. Gurusamy, M. R. Kannan, S. Arockiaraj, Spectra of eccentricity matrices of graphs, Discrete Appl. Math., 285 (2020), 252–260. https://doi.org/10.1016/j.dam.2020.05.029 doi: 10.1016/j.dam.2020.05.029
    [8] I. Mahato, R. Gurusamy, M. R. Kannan, S. Arockiaraj, On the spectral radius and the energy of eccentricity matrix of a graph, Linear Multilinear Algebra, in press. https://doi.org/10.1080/03081087.2021.2015274
    [9] A. K. Patel, L. Selvaganesh, S. K. Pandey, Energy and inertia of the eccentricity matrix of coales-cence of graphs, Discrete Math., 344 (2021), 112591. https://doi.org/10.1016/j.disc.2021.112591 doi: 10.1016/j.disc.2021.112591
    [10] M. Randić, DMAX-matrix of dominant distances in a graph, MATCH Commun. Math. Comput. Chem., 70 (2013), 221–238.
    [11] Y. Shang, Bounds of distance Estrada index of graphs, Ars Comb., 128 (2016), 287–294.
    [12] J. Wang, X. Lei, W. Wei, X. Luo, S. Li, On the eccentricity matrix of graphs and its applications to the boiling point of hydrocarbons, Chemometr. Intell. Lab. Sys., 207 (2020), 104173. https://doi.org/10.1016/j.chemolab.2020.104173 doi: 10.1016/j.chemolab.2020.104173
    [13] J. Wang, M. Lu, L. Lu, F. Belardo, Spectral properties of the eccentricity matrix of graphs, Discrete Appl. Math., 279 (2020), 168–177. https://doi.org/10.1016/j.dam.2019.10.015 doi: 10.1016/j.dam.2019.10.015
    [14] J. Wang, M. Lu, F. Belardo, M. Randić, The anti-adjacency matrix of a graph: eccentricity matrix, Discrete Appl. Math., 251 (2018), 299–309. https://doi.org/10.1016/j.dam.2018.05.062 doi: 10.1016/j.dam.2018.05.062
    [15] J. Wang, L. Lu, M. Randić, G. Z. Li, Graph energy based on the eccentricity matrix, Discrete Math., 342 (2019), 2636–2646. https://doi.org/10.1016/j.disc.2019.05.033 doi: 10.1016/j.disc.2019.05.033
    [16] W. Wei, X. He, S. Li, Solutions for two conjectures on the eigenvalues of the eccentricity matrix, and beyond, Discrete Math., 343 (2020), 111925. https://doi.org/10.1016/j.disc.2020.111925 doi: 10.1016/j.disc.2020.111925
    [17] W. Wei, S. Li, L. Zhang, Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond, Discrete Math., 345 (2022), 112686. https://doi.org/10.1016/j.disc.2021.112686 doi: 10.1016/j.disc.2021.112686
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(49) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog