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1. Introduction

Let G be a simple connected graph with vertex set V(G) = {vi,v,,...,v,}. The distance between
vertices v; and v; in G, denoted by d;(v;, v;), is the length of the shortest path between v; and v;. The
distance matrix of G, denoted by D(G), is the n X n matrix whose (i, j)-entry is equal to dg(v;,V;).
Let A(G) be the adjacency matrix of G. The adjacency matrix and the distance matrix of a graph are
well-studied matrix classes in the field of spectral graph theory. For more details about the study of
classes of matrices associated with graphs, we refer to [2—4].

For u € V(G), eg(u) or e(u) denotes the eccentricity of u in G, which is equal to the largest distance
from u to other vertices in G. The diameter of a graph G, denoted by diam(G), is defined to be the
maximum of the eccentricity of all the vertices of G. A vertex v is said to be an eccentric vertex
of the vertex u if dg(u,v) = e(u). A vertex u € V(G) is said to be a diametrical vertex of G if
e(u) = diam(G). If each vertex of G is a diametrical vertex and has a unique eccentric vertex, then G is
called a diametrical graph.

A matching in G is a set of edges without common vertices. The maximum matching is a matching
with the maximum size in G. The matching number is the size of a maximum matching in G.
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The eccentricity matrix of the graph G, denoted by €(G), is defined as [14]

dg(u,v), if dg(u,v) = min{eg(u), ec(v)},
0, otherwise.

€(G)u,v = {

It is also known as the DMAX-matrix defined by Randi¢ in [10] as a tool for chemical graph theory.
The eigenvalues of the eccentricity matrix of a graph G are called the eccentricity eigenvalues, or
e-eigenvalues, of G. Since €(G) is symmetric, the e-eigenvalues are all real, which are denoted by
E1(G) =2 £(G) = -+ =2 &,(G). As usual, €(G) is called the e-spectral radius of G, denoted also by
p(G).

Recently, the e-spectral radius has received much attention. Wang et al. [13] determined sharp lower
and upper bounds for the e-spectral radius of graphs and identified the corresponding extremal graphs.
Wei et al. [16] determined the n-vertex trees with minimum e-spectral radius. Furthermore, in [16], the
authors identified all trees with given order and diameter having the minimum e-spectral radius. He
and Lu [5] identified the n-vertex trees with fixed odd diameter having the maximum e-spectral radius.
Wei, Li and Zhang [17] characterized the n-vertex trees having the second minimum e-spectral radius
and identified the n-vertex trees with small matching number having the minimum e-spectral radii. For
more advances on the e-eigenvalues, one may be referred to [7-9, 12, 15].

Let TZ;’ be the n-vertex tree obtained from Ps = v{v,v3v4Vs5Ve by attaching a pendent edges to v, b
pendent edges and a path with length 2 to v4, where a,b > 1 and a + b = n — 8, see Figure 1.

123 V3 V4 Vs Ve
e
a b

Figure 1. T:;’ :

Vi

Let 7,4 be the set of trees with order n and diameter d. Wei, Li and Zhang [17] proved in their
Theorem 4.6 that, among the n-vertex trees with matching number 5 in (J .4 7,4, the tree 7‘2”?‘9 has
the minimum e-spectral radius if 10 < n < 16, and the trees T}ZSJ’"_S_M or ﬂ?’”_g_m have the minimum
e-spectral radius if n > 17, where y = ﬁ(48n — 461 — 20 V6n — 17). They commented that “since it
is abnormal for the eccentricity matrices of trees of diameter 4”, their Theorem 4.6 does not solve the

problem for d = 4. So they proposed the following conjecture.

Conjecture 1.1. Among the n-vertex trees with matching number 5 with n > 10, the tree T\;g = has the
minimum e-spectral radius if 10 < n < 16, and the trees ﬂ’g’"_g_m or ﬂ?’"_g_m have the minimum

e-spectral radius if n > 17, where y = ﬁ(48n - 461 —20V6n — 17).

In this article, to avoid the earlier difficulty, we propose new graph transformations, characterize the
certain structures of the extremal trees and determine the unique tree in .7, 4 with matching number 5
having the minimum e-spectral radius, so give an affirmative answer to the conjecture.

2. Preliminaries

In this section, we introduce some preliminary results which will be used to in our proofs. The
following Lemma is a well-known result in the theory of nonnegative matrices, see [4, 6].
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Lemma 2.1. [4,6] Let A and B be two nonnegative irreducible matrices with same order. If A; j < B, ;
for each i, j, then p(A) < p(B) with equality if and only if A = B, where p(A) and p(B) denote the
spectral radius of A and B,respectively.

Mahato et al. [8] obtained a lower bound for the e-spectral radius of a graph with given diameter,
which will be used in the proof of Lemma 3.1 and Lemma 3.2.

Lemma 2.2. If G is a connected graph with diameter d > 2, then &(G) > d with equality if and only
if G is a diametrical graph.

Lemma 2.3. [14] The eccentricity matrix of a tree with order n > 2 is irreducible.

Note that for a tree 7 with at least two vertices, €(7") is an irreducible nonnegative matrix by
Lemma 2.3. Thus by the Perron-Frobenius theorem, p.(7T) is simple, and there is a positive unit
eigenvector of €(T), which is called Perron vector of €(7), corresponding to p.(T).

Lemma24. [17] pe(ff”é’) is the largest root of f(A) = 0, where f(1) = A* —32a1*> — 16bA> — 1412% +
512ab + 1312a + 800b + 2050.

Lemma 2.5. [17] Among \Jgza na with matching number 5, Tig"g is the tree with minimum e-
spectral radius for 10 < n < 16, and ﬁn’ysj’"_g_m or ﬂg,n—S—FVT are trees with the minimum e-spectral
radius for n > 17, where y = ﬁ(48n - 461 —20V6n —17).

3. Main results

Let S, ¢(ao,ai,...,ar) be the tree obtained by adding an edge between the center v, of a star S ;41
and the center v; of the star S, foreachi = 1,2,...,¢, see Figure 2. Any tree with diameter 4 is of
the form S, ((ap,ay,...,a;) with€ >2 and a; > 1 foreachi =1,2,...,¢.

do

a a ag
Figure 2. Tree S, /(ao, a1, az, . . ., ar).
Lemma 3.1. Let T = S, /(ap,ay,...,ap) with{ > 2 and 1 < ay < ay < --- < ap, where n =

I+ 1+ 3¢, a. If there exists k such that 1 <k < € — 1 and a; > 2, then
pE(Sn,[(aO’ ap, ..., — 17 .o dy + 1)) < pE(T)

Proof. Let U; = V(S44+1)\{vi} for 0 < i < €. We partition V(T) into Uy, {vo}, {(vi}, ..., {ve}, U1, ..., Uy,
then €(7) can be written as
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Let x be a Perron eigenvector corresponding to p := p(T), whose coordinate with respect to vertex v

18 X,.

Since px,, =3 25:1 Zu_/_er x,; for any ug € Uy, we have x,, = Xy, for any ug, uj € Uy. Similarly, we
have x,; = x;j for any x,,j,x;j e Ujwith j=1,2,...,¢ Thus

Pxy, = 3(arx,, + axx,, + -+ arxy,);

PXy, = 2(a1xy, + asxy, + -+ agxy,);

px,, =30+ axx,, + -+ aexy,,);

pxy, =3(arx,, +0+---+aex,,);

px,, = 3(aix,, +---+aeix,_, +0);

Pxy, = 2x,, +3(apx,, + 0+ x,, + -+ x,,) + 40 + axx,, + -+ + aexy,);
PXy, = 2xy + 3(aox,, + x,, + 0+ - -+ x,,) +4aix,, +0+---+arx,,);

PXy, = 2x,, + 3(aoxy, + X, + -+ x,,_, +0) +4(a1x,, +---+ap1x,,_, +0).

By eliminating x,,, x,,, . . . X,, from the above system, we obtain

,0236,,1 = (9ap + 9¢ - S)a x,, + ap + 9¢ — 14 + 4p)as x,, + --- + 9ay + 9€ - 14 + 4p)a,x,,;
/ozx,,2 = (9ayp + 9¢ - 14 + 4p)a, x,, + ap + 9¢ - S)axx,, + - - - + 9ap + 9¢ — 14 + 4p)a,x,,;

pzxw = (9ap +9¢ - 14 + 4p)a, x,, + ap +9¢ - 14 + 4p)arx,, + - - - + 9ap + 9€ - 5)a,x,,.

Let ¢ = 9ay + 9¢ — 14. Since x,, > O for all 1 <i < ¢, p is the largest root of f;, ,,(1) = 0, where
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f ak,a[(/l) = . . . .
—(c+4D)a; —(c+4Day -+ A —(c+9a,
22— (c+9a —(c+4Da, - —(c+4Da,
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=|1- ’ Y, (A% + 4a,A — 9a).
; A2+ 461,'/1 - 9(11' l_l( “ a )

By Lemma 2.2, p > diam(T) = 4. Then p? + 4a;p — 9a; > 0 for all 1 < i < ¢. Hence, p is the largest

root of g,, 4,(1) = 0, where

4
a;(c+42)
guk,af(/l) = 1 - Zl /12 N 4ai/l _ 9ai.

Since for 1 > 0,

>0,

8opar (D =

1

d 4a;2> + 2a;cA + 36ai2 + 4al.2c
= (/12 +4a;A - 9611')2

we have g, ,,(4) is monotonically increasing for 4 > 0. Thus it is sufficient to prove g, —1.4,+1(1) >
8ap.a,(A) for 1 = p.
By a direct calculation, one has

8ar-1.a+1 () — 8ap.a, (D)
_ (ar — D)(c +42) B (ar+ 1)(c+42) N ai(c +42) N as(c +4A2)
A +4(ar—DA=9ar—1) 22+4a,+1)A-9a,+1) A2+4aqd—9a; A2 +4daed —9a,
(A +423)4A-9)(ar—ay + 1) ((4/1 - 9(ax + ar) + 2/12)
- (A% + 43 A — 9a) (A% + 4(ay — 1)A — Y(ax — 1))(A2 + daeAd — 9a,) (A% + 4(a; + 1)A — Y(a, + 1))

> 0.

Lemma3.2. Let T, = S,4(n—-8—-0b,1,1,1,b) with1 <b <n—-9. Then p.(Tp) > 6 + V36n — 191 with
equality if and only if b = 1.

AIMS Mathematics Volume 8, Issue 2, 4363-4371.
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Proof. By the proof of Lemma 3.1, p.(T}) is the largest root of

In-8-b)+9-4-14+40 bOn-8-b)+9-4-14+4D)

1-3 )
A2+42-9 A2 +4bA - 9b

i.e., fp(1) = 0, where
() = A4 =81 + (9192 + (20 —9n)b — 27n + 141) A%+ (144b% + (872 - 144n)b) A+ (324(n—b) - 1719)b.
Note that
Ffi(D) =A% = 8% + (170 — 36n)A% + (1016 — 144n)A + 324n — 2043
=(1% + 41 - 9)(2* — 124 + 227 — 36n).
By a direct calculation, p(T}) = 6 + V36n — 191.

Suppose now that 2 < b < n — 9. Then it is sufficient to prove fi(1) > f,(1) for 4 > p(T}). By a
direct calculation, one has

Ji() = fo(D)
= (=956 + 9nb — 20b — 9n + 29)2% + (—144b° + 144nb — 872b — 144n + 1016)A
+324b% + 1719b — 324nb + 324n — 2043
= (b —1)((9n — 9b — 29)2% + (144n — 144b — 1016)1 + 9(36b — 36n + 227))
= (b - 1g),
where g(1) = (9n — 9b — 29)A% + (144n — 144b — 1016)A + 9(36b — 36n + 227) with2 < b < n — 9.

By Lemma 2.2, we get p.(T) > diam(T) = 4. Since 9n —9b - 29 = 9(n-5b) -29 > 52 > 0

144n—-144b-1016 _ 144(n—-b)-1016 . . . .
and — =55 =550" = ~Zonosas < 0> we have g(1) is montoncially increasing for 4 > 0. Then

g() > g(p(Ty)) = g(4) =396(n — b — 8) + 683 > 0. Thus, fi(1) > f() for 1 > p(T}).
We note that a similar treatment has been used in studying the Estrada indices, see [1, 11].

Lemma 3.3. Let T\ = S,4(n - 9,1,1,1,1) and T} = §,5(0,1,1,1,1,n — 10). For n > 11, we have
pe(Tf) > pe(Tl)

Proof. Let Nr,(vo) \ {vi,v2,V3,va} = {wo, wi, ..., wu_10}, Nr,(vi) \ {vo} = {u;} fori = 1,2,3,4. Then

n—10 n—10
T/ =T, - Z vow; + Z WoW;.
i=1 i=1
Let Vi = {uy, uo, u3, us}, Vo = {vi,va,v3,v4} and V3 = {w, wa, ..., w,_10}. As we pass from T, to T}, we
have
2 ifue{w},veVs,
T T 1 ifueV,veVs,
€ v €1 v = X
ey “TN3 ifueVyve Vs,
0 otherwise.

Thus, e(T}) > €(T). Since T, and T are n-vertex trees, by Lemma 2.3, €(T';) and e(77}) are irreducible.
By Lemma 2.1, p(T7) > p(T)).
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Theorem 3.1. Let T be an n-vertex tree with diameter 4 and matching number 5. Then p(T) >
6 + V36n — 191 with equality if and only if T = S ,4(n—-9,1,1,1,1).

Proof. Let T be the tree having minimum e-spectral radius among n-vertex trees with diameter 4
and matching number 5. Then T = S, /(ay, ay, ..., a;). Since the matching number of T is 5, £ = 4
foray > 1 and ¢ = 5 for ap = 0. Thus, assume that T = S, 4(ao,a;, az,as,as) with ap > 1 and
I<a<ay<az<asorT =8,5(0,b,,by,b3,b4,bs) with 1 < b; < by < b3 < by < bs. In the former
case, we have by Lemma 3.1 that a; = a, = a3 = 1, and by Lemma 3.2 that ay = 1, so ayp = n - 9, that
15, T = §,4(n—-9,1,1,1,1). In the latter case, we have by Lemma 3.1 that b; = b, = b3 = by = 1, so
T=S8,50,1,1,1,1,n—10). By Lemma 3.3, 7 = S ,4(n - 9,1,1, 1, 1).

Theorem 3.2. Among the n-vertex trees with matching number 5 with n > 10, /T\;”;’_g is the tree with

lyln-8-ly] Flyln=8-ly1
Tn5 orT 5

minimum e-spectral radius for 10 < n < 16, and r are trees with the minimum

e-spectral radius for n > 17, where y = ﬁ(48n — 461 - 20V6n — 17).

Proof. Let T be the tree minimizing the e-spectral radius in .7}, 4 with matching number 5. If d = 4,
then7 = §,4(n—-9,1,1,1,1) by Theorem 3.1. If d > 5, then T = ng by Lemma 2.5. Let p. be the

spectral radius of 7’\5? . Then by Lemma 2.4, p, is the largest root of f(1) = 0, where
f) = A* = 32a2> — 16bA*> — 1412° + 512ab + 1312a + 800b + 2050.
Note that a + b = n — 8. Thus
f) = 2* = (161 + 16a + 13)2* + 512a(n — 7 — a) + 8001 — 4350.
Since n > 10, then 512a(n — 7 — a) + 800n — 4350 > 0. Thus

Ta,b _

pT,5) =
< V16n+ 16a+ 13

< 16n+16(n —8) + 13

\/16n + 16a + 13 + \/(16n + 16a + 13)? — 4(512a(n — 7 — a) + 800n — 435)
2

= V32n-115
< \/36;1 — 155 +12V36n — 191
= 6+ V36n - 191

= pE(Sn,4(n - 9’ 17 1’ 15 1))'

Combining with Lemma 2.5, the result follows.

4. Conclusions

In this contribution, we characterize the unique tree among all trees with diameter 4 and matching
number 5 that minimizes the e-spectral radius. This confirms a conjecture in [17]. By combining the
results from [17], the trees with minimum e-spectral radius among all trees with matching number
r < 5 have been characterized completely. For further study, one may try to determine the trees with
the minimum e-spectral radius among all trees with matching number r > 6 or even among trees with
given fraction matching number.
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