Citation: Maria Adam, Dimitra Aggeli, Aikaterini Aretaki. Some new bounds on the spectral radius of nonnegative matrices[J]. AIMS Mathematics, 2020, 5(1): 701-716. doi: 10.3934/math.2020047
[1] | M. Adam, Aik. Aretaki, Sharp bounds for eigenvalues of the generalized k, m-step Fibonacci matrices, Proceedings of the 3rd International Conference on Numerical Analysis and Scientific Computation with Applications (NASCA18), Kalamata, Greece, (2018). Available from: http://nasca18.math.uoa.gr/participants-nbsp.html. |
[2] | A. Brauer, I.C. Gentry, Bounds for the greatest characteristic root of an irreducible nonnegative matrix, Linear Algebra its Appl., 8 (1974), 105-107. doi: 10.1016/0024-3795(74)90048-2 |
[3] | F. Duan, K. Zhang, An algorithm of diagonal transformation for Perron root of nonnegative irreducible matrices, Appl. Math. Comput., 175 (2006), 762-772. |
[4] | X. Duan, B. Zhou, Sharp bounds on the spectral radius of a nonnegative matrix, Linear Algebra its Appl., 439 (2013), 2961-2970. doi: 10.1016/j.laa.2013.08.026 |
[5] | G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber, Kön. Preuss. Akad. Wiss. Berlin, (1912), 465-477. |
[6] | J. He, Y.M. Liu, J.K. Tian, et al., Some new sharp bounds for the spectral radius of a nonnegative matrix and its application, J. Inequalities Appl., 260 (2017), 1-6. |
[7] | W. Hong, L. You, Further results on the spectral radius of matrices and graphs, Appl. Math. Comput., 239 (2014), 326-332. |
[8] | R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, second edition, 2013. |
[9] | H. Lin, B. Zhou, On sharp bounds for spectral radius of nonnegative matrices, Linear Multilinear Algebra, 65 (2017), 1554-1565. doi: 10.1080/03081087.2016.1246514 |
[10] | A. Melman, Upper and lower bounds for the Perron root of a nonnegative matrix, Linear Multilinear Algebra, 61 (2013), 171-181. doi: 10.1080/03081087.2012.667096 |
[11] | R. Xing, B. Zhou, Sharp bounds for the spectral radius of nonnegative matrices, Linear Algebra its Appl., 449 (2014), 194-209. doi: 10.1016/j.laa.2014.02.031 |
[12] | C. Wen, T. Z. Huang, A modified algorithm for the Perron root of a nonnegative matrix, Appl. Math. Comput., 217 (2011), 4453-4458. |
[13] | P. Walters, An introduction to ergodic theory, New York (NY), Springer-Verlag, 1982. |