Research article

Generalized Perron complements in diagonally dominant matrices

  • Received: 20 September 2024 Revised: 10 November 2024 Accepted: 21 November 2024 Published: 29 November 2024
  • MSC : 15A18, 15A42, 15A48

  • The concept of the generalized Perron complement concerning a nonnegative irreducible matrix was proposed by L. Z. Lu in 2002, and it was used to construct an algorithm for estimating the boundary of the spectral radius. In this study, we consider the properties of generalized Perron complements of nonnegative irreducible and diagonally dominant matrices. Moreover, we analyze the closure property of the generalized Perron complements of nonnegative irreducible $ H $-matrices under certain conditions.

    Citation: Qin Zhong, Na Li. Generalized Perron complements in diagonally dominant matrices[J]. AIMS Mathematics, 2024, 9(12): 33879-33890. doi: 10.3934/math.20241616

    Related Papers:

  • The concept of the generalized Perron complement concerning a nonnegative irreducible matrix was proposed by L. Z. Lu in 2002, and it was used to construct an algorithm for estimating the boundary of the spectral radius. In this study, we consider the properties of generalized Perron complements of nonnegative irreducible and diagonally dominant matrices. Moreover, we analyze the closure property of the generalized Perron complements of nonnegative irreducible $ H $-matrices under certain conditions.



    加载中


    [1] M. Fiedler, V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J., 12 (1962), 382–400.
    [2] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262
    [3] K. R. James, W. Riha, Convergence criteria for successive overrelaxation, SIAM J. Numer. Anal., 12 (1975), 137–143. https://doi.org/10.1137/0712013 doi: 10.1137/0712013
    [4] W. W. Jiang, Q. Tuo, A set of new criteria for the iterative discrimination of subdivision of nonsingular $H$-Matrices, Adv. Appl. Math., 9 (2020), 50–59. https://doi.org/10.12677/AAM.2020.91007 doi: 10.12677/AAM.2020.91007
    [5] K. Ojiro, H. Niki, M. Usui, A new criterion for the $H$-matrix property, J. Comput. Appl. Math., 150 (2003), 293–302. https://doi.org/10.1016/S0377-0427(02)00666-0 doi: 10.1016/S0377-0427(02)00666-0
    [6] H. B. Li, T. Z. Huang, On a new criterion for the $H$-matrix property, Appl. Math. Lett., 19 (2006), 1134–1142. https://doi.org/10.1016/j.aml.2005.12.005 doi: 10.1016/j.aml.2005.12.005
    [7] Y. Li, X. Y. Chen, Y. Q. Wang, Some new criteria for identifying $H$-matrices, Filomat, 38 (2024), 1375–1387. https://doi.org/10.2298/FIL2404375L doi: 10.2298/FIL2404375L
    [8] D. Carlson, T. L. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J., 29 (1979), 246–251.
    [9] C. D. Meyer, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114 (1989), 69–94. https://doi.org/10.1016/0024-3795(89)90452-7 doi: 10.1016/0024-3795(89)90452-7
    [10] L. Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341 (2002), 239–248. https://doi.org/10.1016/S0024-3795(01)00378-0 doi: 10.1016/S0024-3795(01)00378-0
    [11] N. T. Binh, Smoothed lower order penalty function for constrained optimization problems, IAENG Int. J. Appl. Math., 46 (2016), 76–81.
    [12] J. W. Cai, P. Chen, X. Mei, X. Ji, Realized range-based threshold estimation for jump-diffusion models, IAENG Int. J. Appl. Math., 45 (2015), 293–299.
    [13] M. Neumann, Inverses of Perron complements of inverse $M$-matrices, Linear Algebra Appl., 313 (2000), 163–171. https://doi.org/10.1016/S0024-3795(00)00128-2 doi: 10.1016/S0024-3795(00)00128-2
    [14] S. M. Fallat, M. Neumann, On Perron complements of totally nonnegative matrices, Linear Algebra Appl., 327 (2001), 85–94. https://doi.org/10.1016/S0024-3795(00)00312-8 doi: 10.1016/S0024-3795(00)00312-8
    [15] S. W. Zhou, T. Z. Huang, On Perron complements of inverse ${{N}_{0}}$-matrices, Linear Algebra Appl., 434 (2011), 2081–2088. https://doi.org/10.1016/j.laa.2010.12.004 doi: 10.1016/j.laa.2010.12.004
    [16] Q. Zhong, C. Y. Zhao, Extended Perron complements of $M$-matrices, AIMS Math., 8 (2023), 26372–26383. https://doi.org/10.3934/math.20231346 doi: 10.3934/math.20231346
    [17] Z. G. Ren, T. Z. Huang, X. Y. Cheng, A note on generalized Perron complements of $Z$-matrices, Electron. J. Linear Al., 15 (2006), 8–13. https://doi.org/10.13001/1081-3810.1217 doi: 10.13001/1081-3810.1217
    [18] G. X. Huang, F. Yin, K. Guo, The lower and upper bounds on Perron root of nonnegative irreducible matrices, J. Comput. Appl. Math., 217 (2008), 259–267. https://doi.org/10.1016/j.cam.2007.06.034 doi: 10.1016/j.cam.2007.06.034
    [19] S. M. Yang, T. Z. Huang, A note on estimates for the spectral radius of a nonnegative matrix, Electron. J. Linear Algebra, 13 (2005), 352–358. https://doi.org/10.13001/1081-3810.1168 doi: 10.13001/1081-3810.1168
    [20] Z. M. Yang, Some closer bounds of Perron root basing on generalized Perron complement, J. Comput. Appl. Math., 235 (2010), 315–324. https://doi.org/10.1016/j.cam.2010.06.012 doi: 10.1016/j.cam.2010.06.012
    [21] M. Adm, J. Garloff, Total nonnegativity of the extended Perron complement, Linear Algebra Appl., 508 (2016), 214–224. https://doi.org/10.1016/j.laa.2016.07.002 doi: 10.1016/j.laa.2016.07.002
    [22] H. Tanaka, Perturbed finite-state Markov systems with holes and Perron complements of Ruelle operators, Isr. J. Math., 236 (2020), 91–131. https://doi.org/10.1007/s11856-020-1968-1 doi: 10.1007/s11856-020-1968-1
    [23] L. L. Wang, J. Z. Liu, S. Chu, Properties for the Perron complement of three known subclasses of $H$-matrices, J. Inequal. Appl., 2015 (2015), 1–10. https://doi.org/10.1186/s13660-014-0531-1 doi: 10.1186/s13660-014-0531-1
    [24] H. Diao, H. Liu, L. Tao, Stable determination of an impedance obstacle by a single far-field measurement, Inverse Probl., 40 (2024), 055005. https://doi.org/10.1088/1361-6420/ad3087 doi: 10.1088/1361-6420/ad3087
    [25] T. B. Gan, T. Z. Huang, Simple criteria for nonsingular $H$-matrices, Linear Algebra Appl., 374 (2003), 317–326. https://doi.org/10.1016/S0024-3795(03)00646-3 doi: 10.1016/S0024-3795(03)00646-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(201) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog