In this paper, the dynamics of a discrete-time chemostat model were investigated. The discretization was obtained using the piecewise constant argument method. An analysis was performed to determine the existence and stability of fixed points. In addition, we have shown that the model experiences transcritical and period-doubling bifurcations. Two chaos control techniques, feedback control and hybrid control, were employed to control bifurcation and chaos in the model. Moreover, we provided numerical simulations to substantiate our theoretical results. This study illustrates that the piecewise constant argument method is more dynamically consistent than the forward Euler method.
Citation: Ibraheem M. Alsulami. On the stability, chaos and bifurcation analysis of a discrete-time chemostat model using the piecewise constant argument method[J]. AIMS Mathematics, 2024, 9(12): 33861-33878. doi: 10.3934/math.20241615
In this paper, the dynamics of a discrete-time chemostat model were investigated. The discretization was obtained using the piecewise constant argument method. An analysis was performed to determine the existence and stability of fixed points. In addition, we have shown that the model experiences transcritical and period-doubling bifurcations. Two chaos control techniques, feedback control and hybrid control, were employed to control bifurcation and chaos in the model. Moreover, we provided numerical simulations to substantiate our theoretical results. This study illustrates that the piecewise constant argument method is more dynamically consistent than the forward Euler method.
[1] | K. S. N. Al-Basyouni, A. Q. Khan, Bifurcation analysis of a discrete-time chemostat model, Math. Probl. Eng., 2023 (2023), 7518261. https://doi.org/10.1155/2023/7518261 doi: 10.1155/2023/7518261 |
[2] | D. Zhang, L. Wang, Multistability driven by inhibitory kinetics in a discrete-time size-structured chemostat model, Chaos, 29 (2019), 063112. https://doi.org/10.1063/1.5096661 doi: 10.1063/1.5096661 |
[3] | M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J. Appl. Anal. Comput., 7 (2017), 478–500. https://doi.org/10.11948/2017030 doi: 10.11948/2017030 |
[4] | A. Khan, I. M. Alsulami, Discrete Leslie's model with bifurcations and control, AIMS Math., 8 (2023), 22483–22506. https://doi.org/10.3934/math.20231146 doi: 10.3934/math.20231146 |
[5] | S. Akhtar, R. Ahmed, M. Batool, N. A. Shah, J. D. Chung, Stability, bifurcation and chaos control of a discretized Leslie prey-predator model, Chaos Soliton. Fract., 152 (2021), 111345. https://doi.org/10.1016/j.chaos.2021.111345 doi: 10.1016/j.chaos.2021.111345 |
[6] | P. A. Naik, Z. Eskandari, Z. Avazzadeh, J. Zu, Multiple bifurcations of a discrete-time prey-predator model with mixed functional response, Int. J. Bifurcat. Chaos, 32 (2022), 2250050. https://doi.org/10.1142/s021812742250050x doi: 10.1142/s021812742250050x |
[7] | P. A. Naik, Z. Eskandari, A. Madzvamuse, Z. Avazzadeh, J. Zu, Complex dynamics of a discrete-time seasonally forced SIR epidemic model, Math. Method. Appl. Sci., 46 (2023), 7045–7059. https://doi.org/10.1002/mma.8955 doi: 10.1002/mma.8955 |
[8] | Z. Jing, J. Yang, Bifurcation and chaos in discrete-time predator-prey system, Chaos Soliton. Fract., 27 (2006), 259–277. https://doi.org/10.1016/j.chaos.2005.03.040 doi: 10.1016/j.chaos.2005.03.040 |
[9] | A. Suleman, R. Ahmed, F. S. Alshammari, N. A. Shah, Dynamic complexity of a slow-fast predator-prey model with herd behavior, AIMS Math., 8 (2023), 24446–24472. https://doi.org/10.3934/math.20231247 doi: 10.3934/math.20231247 |
[10] | A. Suleman, A. Q. Khan, R. Ahmed, Bifurcation analysis of a discrete Leslie-gower predator-prey model with slow-fast effect on predator, Math. Method. Appl. Sci., 47 (2024), 8561–8580. https://doi.org/10.1002/mma.10032 doi: 10.1002/mma.10032 |
[11] | R. Ahmed, N. Tahir, N. A. Shah, An analysis of the stability and bifurcation of a discrete-time predator-prey model with the slow-fast effect on the predator, Chaos, 34 (2024), 033127. https://doi.org/10.1063/5.0185809 doi: 10.1063/5.0185809 |
[12] | J. Wiener, Generalized solutions of functional differential equations, World Scientific, 1993. https://doi.org/10.1142/9789814343183 |
[13] | Q. Zhou, F. Chen, S. Lin, Complex dynamics analysis of a discrete amensalism system with a cover for the first species, Axioms, 11 (2022), 365. https://doi.org/10.3390/axioms11080365 doi: 10.3390/axioms11080365 |
[14] | R. Ahmed, S. Akhtar, U. Farooq, S. Ali, Stability, bifurcation, and chaos control of predator-prey system with additive Allee effect, Commun. Math. Biol. Neurosci., 2023 (2023), 9. https://doi.org/10.28919/cmbn/7824 doi: 10.28919/cmbn/7824 |
[15] | P. Amster, G. Robledo, D. Sepulveda, Dynamics of a discrete size-structured chemostat with variable nutrient supply, Discrete Cont. Dyn. B, 28 (2023), 4937–4967. https://doi.org/10.3934/dcdsb.2023048 doi: 10.3934/dcdsb.2023048 |
[16] | M. S. Shabbir, Q. Din, M. Safeer, M. A. Khan, K. Ahmad, A dynamically consistent nonstandard finite difference scheme for a predator-prey model, Adv. Differ. Equ., 2019 (2019), 381. https://doi.org/10.1186/s13662-019-2319-6 doi: 10.1186/s13662-019-2319-6 |
[17] | R. Ahmed, A. Ahmad, N. Ali, Stability analysis and Neimark-sacker bifurcation of a nonstandard finite difference scheme for Lotka-Volterra prey-predator model, Commun. Math. Biol. Neurosci., 2022 (2022), 61. https://doi.org/10.28919/cmbn/7534 doi: 10.28919/cmbn/7534 |
[18] | N. Bairagi, M. Biswas, A predator-prey model with Beddington-DeAngelis functional response: a non-standard finite-difference method, J. Differ. Equ. Appl., 22 (2016), 581–593. https://doi.org/10.1080/10236198.2015.1111345 doi: 10.1080/10236198.2015.1111345 |
[19] | M. U. Akhmet, Stability of differential equations with piecewise constant arguments of generalized type, Nonlinear Anal. Theor., 68 (2008), 794–803. https://doi.org/10.1016/j.na.2006.11.037 doi: 10.1016/j.na.2006.11.037 |
[20] | M. S. Alwan, X. Liu, W. C. Xie, Comparison principle and stability of differential equations with piecewise constant arguments, J. Franklin I., 350 (2013), 211–230. https://doi.org/10.1016/j.jfranklin.2012.08.016 doi: 10.1016/j.jfranklin.2012.08.016 |
[21] | A. Q. Khan, Global dynamics, bifurcation analysis, and chaos in a discrete Kolmogorov model with piecewise-constant argument, Math. Probl. Eng., 2021 (2021), 5259226. https://doi.org/10.1155/2021/5259226 doi: 10.1155/2021/5259226 |
[22] | F. Bozkurt, A. Yousef, H. Bilgil, D. Baleanu, A mathematical model with piecewise constant arguments of colorectal cancer with chemo-immunotherapy, Chaos Soliton. Fract., 168 (2023), 113207. https://doi.org/10.1016/j.chaos.2023.113207 doi: 10.1016/j.chaos.2023.113207 |
[23] | P. A. Naik, Y. Javaid, R. Ahmed, Z. Eskandari, A. H. Ganie, Stability and bifurcation analysis of a population dynamic model with Allee effect via piecewise constant argument method, J. Appl. Math. Comput., 70 (2024), 4189–4218. https://doi.org/10.1007/s12190-024-02119-y doi: 10.1007/s12190-024-02119-y |
[24] | A. Khan, I. M. Alsulami, Complicate dynamical analysis of a discrete predator-prey model with a prey refuge, AIMS Math., 8 (2023), 15035–15057. https://doi.org/10.3934/math.2023768 doi: 10.3934/math.2023768 |
[25] | A. A. Khabyah, R. Ahmed, M. S. Akram, S. Akhtar, Stability, bifurcation, and chaos control in a discrete predator-prey model with strong Allee effect, AIMS Math., 8 (2023), 8060–8081. https://doi.org/10.3934/math.2023408 doi: 10.3934/math.2023408 |
[26] | A. Khan, I. M. Alsulami, S. Hamdani, Controlling the chaos and bifurcations of a discrete prey-predator model, AIMS Math., 9 (2024), 1783–1818. https://doi.org/10.3934/math.2024087 doi: 10.3934/math.2024087 |
[27] | A. Q. Khan, I. M. Alsulami, U. Sadiq, Stability, chaos, and bifurcation analysis of a discrete chemical system, Complexity, 2022 (2022), 6921934. https://doi.org/10.1155/2022/6921934 doi: 10.1155/2022/6921934 |
[28] | X. Jiang, X. Chen, M. Chi, J. Chen, On Hopf bifurcation and control for a delay systems, Appl. Math. Comput., 370 (2020), 124906. https://doi.org/10.1016/j.amc.2019.124906 doi: 10.1016/j.amc.2019.124906 |
[29] | X. Jiang, X. Chen, T. Huang, H. Yan, Bifurcation and control for a predator-prey system with two delays, IEEE T. Circuits II, 68 (2021), 376–380. https://doi.org/10.1109/tcsii.2020.2987392 doi: 10.1109/tcsii.2020.2987392 |
[30] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[31] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer, 2003. https://doi.org/10.1007/b97481 |
[32] | Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-3978-7 |
[33] | G. Chen, X. Dong, From chaos to order, World Scientific, 1998. https://doi.org/10.1142/3033 |
[34] | C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. https://doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313 |
[35] | X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Soliton. Fract., 18 (2003), 775–783. https://doi.org/10.1016/s0960-0779(03)00028-6 doi: 10.1016/s0960-0779(03)00028-6 |