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Abstract: In this paper, the dynamics of a discrete-time chemostat model were investigated. The
discretization was obtained using the piecewise constant argument method. An analysis was performed
to determine the existence and stability of fixed points. In addition, we have shown that the model
experiences transcritical and period-doubling bifurcations. Two chaos control techniques, feedback
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1. Introduction

Mathematical models are essential tools in the study of complicated events inside biological
models. Out of all these models, the chemostat model is particularly notable for its role in explaining
the mechanics of cell mass increase in controlled conditions. The chemostat is a continuous
bioreactor that is crucial for developing microalgae and different microorganisms in both laboratory
and industrial environments. The chemostat model is extensively used in several domains, including
microbial ecology and bioprocess engineering. The adaptability and effectiveness of this model arise
from its capacity to maintain a consistent environment of nutrient availability while simultaneously
eliminating waste products. This allows for the ongoing development of microbial populations under
carefully controlled environments.

Ecological theory often uses the chemostat model as a simplified depiction of actual ecosystems,
such as lakes or oceans. Researchers obtain insights into the principles regulating population
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dynamics, resource competition, and ecosystem stability by imitating the dynamics of nutrient inflow
and microbial development. This abstraction enables the investigation of ecological topics in a
controlled laboratory environment, providing vital understanding of the dynamics of real ecosystems.
Moreover, the chemostat model is a great tool for analyzing the effectiveness of antibiotics and
developing methods for wastewater treatment. The chemostat is used in antibiotic research to provide
a controlled environment for evaluating bacteria susceptibility, resistance mechanisms, and
pharmacokinetic factors. Similarly, in the context of wastewater treatment, the chemostat allows
researchers to investigate the capacity of microbial communities to break down pollutants and
eliminate contaminants from effluent streams.

Consider the following continuous-time chemostat model [1]: dN
dt = α( C

1+C )N − N,
dC
dt = −( C

1+C )N −C + β,
(1.1)

where N(t) represents the number of bacterial cells per unit volume of the growth medium at time t,
reflecting the abundance of bacteria within the chemostat. C(t) denotes the concentration of nutrients
at time t available in the growth compartment, influencing bacterial growth rates and population
dynamics. Moreover, α quantifies the intrinsic growth rate of bacterial populations, and β represents
the rate at which fresh nutrients are supplied to the chemostat. The parameters α and β are positive
constants. The detailed derivation of this model is given in [1]. They discretized this model using the
forward Euler method and thus obtained the following discrete-time chemostat model:Nt+1 = (1 − h)Nt + αh( Ct

1+Ct
)Nt,

Ct+1 = βh + (1 − h)Ct − h( Ct
1+Ct

)Nt,
(1.2)

where h > 0 is the step size. They investigated the existence and stability of fixed points (FPs).
Moreover, it is proved that their model experiences only period-doubling (PD) bifurcation at the
positive FP.

Dynamic models may be expressed as continuous-time models, which are characterized by
differential equations, or as discrete-time models, which are described by difference equations. The
study of discrete-time models is growing in popularity due to their effectiveness in non-overlapping
generation, ease of numerical solution acquisition, and more complex dynamical behaviors. Recently,
discrete-time models have received considerable interest from researchers [2–7]. There are several
strategies for converting continuous models to discrete ones, including the forward Euler
approach [8–11], the piecewise constant argument method [12–15], and the nonstandard finite
difference scheme [16–18].

Akhmet [19] investigated differential equations characterized by a piecewise constant argument of
generalized type (EPCAG) and proposed a novel deviation function form, specifying the solution sets
and setting criteria for the stability of the zero solution. Alwan et al. [20] established a comparison
principle for nonlinear differential equations with piecewise constant arguments (EPCA), employing
Lyapunov functions to demonstrate stability characteristics, especially in scenarios where the
arguments facilitate stabilization, with implications for logistic growth models. Khan [21] examined a
discrete Kolmogorov model with a piecewise constant argument, analyzing local dynamics, chaos,
and bifurcations, especially flip bifurcations, and illustrated the efficacy of feedback control in
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stabilizing chaos. Bozkurt et al. [22] developed a colorectal cancer model using piecewise constant
arguments to investigate tumor development and the effects of chemo-immunotherapy, assessing
equilibrium stability and demonstrating bifurcation phenomena, including period-doubling and
Neimark-Sacker behaviors. Naik et al. [23] used the piecewise constant argument approach on a
predator-prey model including the Allee effect, identifying Neimark-Sacker bifurcations and using
feedback and hybrid controls to mitigate bifurcations and chaos, therefore emphasizing the Allee
effect’s significance in population dynamics.

A discrete-time model is dynamically consistent with its continuous counterpart when both
demonstrate similar dynamical characteristics, such as boundedness, solution persistence, steady state
stability, chaos, and bifurcation. While the forward Euler method is often employed for discretization,
it is not dynamically consistent with its continuous counterparts. An important issue is that the
discrete model generated by the Euler technique is not completely realistic. This is due to the fact that
some initial values and parameters may produce negative values for predator and prey populations.
Another issue is that the discretized model has an extra parameter h, the step size. This new parameter
also affects the dynamics of the model. Nonetheless, use of the piecewise constant argument method
prevents the chance of negative values. Moreover, we have the same parameters in the discretized
model as in our original continuous-time model. Thus, we discretize the model (1.1) employing the
piecewise constant argument technique. By utilizing piecewise constant arguments to solve nonlinear
differential equations and considering the regular time interval for the average growth rate in both
populations, we can rewrite system (1.1) as follows: 1

N(t)
dN
dt = α( C[t]

1+C[t] ) − 1,
1

C(t)
dC
dt = −( 1

1+C[t] )N[t] − 1 + β

C[t] ,
(1.3)

where [t] represents the integer part of t, and 0 < t < ∞. Furthermore, integrating system (1.3) on an
interval [n, n + 1) with n = 0, 1, 2, · · · yields the following system:

Nt = Nn exp
(
( αCn

1+Cn
− 1)(t − n)

)
,

Ct = Cn exp
(
(− Nn

1+Cn
− 1 + β

Cn
)(t − n)

)
.

(1.4)

Taking t → n + 1, we obtain the following discrete-time system:
Nn+1 = Nn exp

(
αCn

1+Cn
− 1
)
,

Cn+1 = Cn exp
(
−

Nn
1+Cn
− 1 + β

Cn

)
.

(1.5)

After replacing n by t, we obtain 
Nt+1 = Nt exp

(
αCt

1+Ct
− 1
)
,

Ct+1 = Ct exp
(
−

Nt
1+Ct
− 1 + β

Ct

)
.

(1.6)

The model (1.2) can produce negative values for N(t) and C(t), particularly when h is quite big and α
is considerably small. However, due to the properties of the exponential function, which has a positive

AIMS Mathematics Volume 9, Issue 12, 33861–33878.



33864

range, the model (1.6) excludes the possibility of negative values for N(t) and C(t). This demonstrates
that the piecewise constant argument method is more appropriate than the forward Euler method.

The discrete-time chemostat model (1.6) analyzed in this study is novel in its application of the
piecewise constant argument method, which overcomes the limitations of the traditional forward Euler
method by ensuring biologically realistic, non-negative values for populations and nutrients. The main
objective of this study is to investigate the stability and bifurcation in a discrete-time chemostat model
via the piecewise constant argument method. For the detailed analysis of stability and bifurcation
in discrete-time models, we refer the readers to [24–29] and the references therein. The subsequent
sections of the paper are arranged as follows: Section 2 is dedicated to investigating the existence
and stability of FPs. Section 3 examines the study of bifurcations that include transcritical (TC) and
period-doubling (PD) bifurcations. Two chaos control techniques, feedback control and hybrid control,
are presented in Section 4. In Section 5, numerical simulation results are presented to support the
theoretical analysis and display the new and rich dynamic behavior. Finally, a brief conclusion is
presented in Section 6.

2. The existence and local stability analysis of FPs

Stability analysis in the chemostat model entails evaluating the model’s propensity to achieve and
sustain a stable equilibrium state over a period of time. The purpose is to ascertain if the microbial
populations and nutrient concentrations in the chemostat display stable dynamics or experience
oscillations or instability. This study is essential for comprehending the model’s ability to withstand
environmental changes and disturbances, which in turn helps in optimizing operating conditions and
designing resilient bioreactor models. Stability analysis offers valuable information on the long-term
dynamics of microbial populations and nutrient levels in continuous culture models. This knowledge
helps in making well-informed decisions in the fields of microbial ecology, biotechnology, and
bioprocess engineering.

To obtain the FPs (N, P) of the model (1.6), we are required to solve the subsequent algebraic
equations: 

N = N exp
(
αC

1+C − 1
)
,

C = C exp
(
− N

1+C − 1 + βC

)
.

(2.1)

The model (1.6) possesses two FPs E1 = (0, β) and E2 = (α(1+β−αβ)
1−α , 1

−1+α ). The first FP, E1, is a boundary
FP that exists always. The second FP, E2, is the unique positive FP if α > 1 + 1

β
.

The Jacobian matrix of the model Nt+1 = φ(Nt,Ct),
Ct+1 = ϕ(Nt,Ct),

is the matrix given below:

J(N,C) =

 ∂φ∂N ∂φ

∂C
∂ϕ

∂N
∂ϕ

∂C

 .
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Thus, the Jacobian matrix J(N,C) of the model (1.6) evaluated at any FP (N,C) is as follows:

J(N,C) =

 e−1+ Cα
1+C e−1+ Cα

1+C Nα
(1+C)2

− e−1− N
1+C +

β
C C

1+C
e−1− N

1+C +
β
C (C+(2+N)C2+C3−(1+C)2β)

C(1+C)2

 .
The eigenvalues ξ1,2 of the Jacobian matrix J are helpful in determining the stability of FPs. The
FP (x, y) is called a sink if |ξ1,2| < 1 and a source if |ξ1| > 1 and |ξ2| > 1. Furthermore, the FP (x, y)
is classified as a saddle point (SP) if |ξ1| > 1 and |ξ2| < 1 (or |ξ1| < 1 and |ξ2| > 1). In the case of
a non-hyperbolic point (NHBP) (x, y), either |ξ1| = 1 or |ξ2| = 1. At a NHBP, the model experiences
different types of bifurcations depending on the nature of the eigenvalues of the Jacobian matrix. The
following result provides the topological classification of E1.

Theorem 2.1. The boundary FP, E1, is (1) a sink if α < 1+ 1
β
, (2) never a source, (3) an SP if α > 1+ 1

β

and (4) an NHBP if α = 1 + 1
β
.

Proof. Through computations, it is obtained that

J(E1) =

e−1+ αβ1+β 0

−
β

1+β 0

 .
The eigenvalues of J(E0) are ξ1 = e−1+ αβ1+β and ξ2 = 0. One can easily check that

−1 +
αβ

1 + β


< 0 if α < 1 + 1

β
,

= 0 if α = 1 + 1
β
,

> 0 if α > 1 + 1
β
.

(2.2)

□

If (4) is satisfied, then it follows that one of the eigenvalues of the matrix J(E1) is 1. Consequently, a
TC bifurcation occurs at E1.

Remark 2.1. One key difference we want to highlight here is that the boundary FP, E1, of our
discretized model is never a source. But in [1], the authors proved that E1 can be a source under
certain conditions on the parameters. The Jacobian matrix of the continuous-time model (1.1)
evaluated at E1 has eigenvalues ξ1 = −1 and ξ2 =

−1+(−1+α)β
1+β . Clearly, the first eigenvalue is negative.

Thus, in the continuous-time model (1.1) the FP, E1, can never be a source. This comparison
strengthens the fact that the piecewise constant argument method is better than the forward Euler
method, as it shows more dynamic consistency with its continuous counterpart.

Theorem 2.2. Assume that α > 1+ 1
β
. The positive FP, E2, is (1) a sink if 1

−1+α < β <
−1+3α

1−2α+α2 , (2) never
a source, (3) an SP if β > −1+3α

1−2α+α2 and (4) an NHBP if β = −1+3α
1−2α+α2 .

Proof. The Jacobian matrix computed at E1 is given by

J(E2) =

 1 (−1 + α)(−1 + (−1 + α)β)

− 1
α

−
(−1+α)(−1+(−1+α)β)

α

 .
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The eigenvalues of J(E1) are ξ1 = 0 and ξ2 = −
1+β+α2β−2α(1+β)

α
. One can easily check that

∣∣∣∣∣ − 1 + β + α2β − 2α(1 + β)
α

∣∣∣∣∣

< 1 if 1

−1+α < β <
−1+3α

1−2α+α2 ,

= 1 if β = −1+3α
1−2α+α2 ,

> 1 if β > −1+3α
1−2α+α2 .

(2.3)

□

If (4) is true, then it follows that one of the eigenvalues of the matrix J(E2) is −1. Consequently, a PD
bifurcation occurs at E2.

Remark 2.2. One can check that the Jacobian matrix of the continuous-time model (1.1) evaluated
at E2 has eigenvalues ξ1 = −1 and ξ2 =

(1−α)(−1+(−1+α)β)
α

. Thus, in the continuous-time model (1.1) the
positive FP, E2, can never be a source. We also obtain the same result. But in [1], the authors proved
that E2 can be a source under certain conditions on parameters. This comparison strengthens the fact
that the piecewise constant argument method is better than the forward Euler method, as it shows more
dynamic consistency with its continuous counterpart.

2.1. Summary

• For α ≤ 1 + 1
β
, the model (1.6) has only one FP, E1, which is stable until α < 1 + 1

β
.

• For α > 1+ 1
β
, the model possesses two FPs E1 and E2. From these two FPs, E1 is always unstable,

but E2 is stable until 1
−1+α < β <

−1+3α
1−2α+α2 .

• The boundary FP, E1, always exists and is never destroyed. However, E1 interchanges its stability
with the other FP E2 as we vary α about the critical value α = 1+ 1

β
. Thus, the model experiences

TC bifurcation at E1 if α = 1 + 1
β
.

• The model experiences PD bifurcation at E2 if β = −1+3α
1−2α+α2 .

Remark 2.3. The stability classifications in our chemostat model reflect the long-term behavior of
microbial populations and nutrient levels. A sink indicates a stable equilibrium where populations
and nutrients reach a steady state. A saddle point is stable in one direction but unstable in another,
resulting in possible alterations in dynamics under changing circumstances. A non-hyperbolic point
is a key threshold at which little changes may cause substantial transitions, such as oscillations or
instability, signifying the start of complex behaviors such as resource depletion or population surges.

3. Bifurcation analysis

The purpose of this section is to comprehensively examine bifurcation phenomena, specifically
focusing on TC bifurcation at E1 and PD at E2. To get a thorough comprehension of bifurcation
analysis, we recommend consulting the references [30, 31]. Bifurcation plays a critical role in
influencing the dynamics of the model, highlighting circumstances where even little alterations in
parameters may result in substantial changes in the dynamics of the chemostat model. More precisely,
it investigates how changes in factors like nutrition supply, dilution rate, or microbial growth rates
result in the appearance of distinct stable conditions, periodic fluctuations, or chaotic patterns in the
chemostat. Comprehending the bifurcation behavior allows for the fine-tuning of chemostat
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operational parameters in order to attain certain objectives, such as increasing biomass yield, limiting
nutrient use, or ensuring the stability of microbial communities.

3.1. TC bifurcation at E1

In this subsection, we investigate the TC bifurcation at E1 by considering condition (4) outlined in
Theorem 2.1. Adding a sufficiently small perturbation parameter δ into the bifurcation parameter α in
the neighborhood of α1 = 1 + 1

β
, the model (1.6) takes the subsequent form:

Nt+1 = Nt exp
(

(α1+δ)Ct
1+Ct

− 1
)
,

Ct+1 = Ct exp
(
−

Nt
1+Ct
− 1 + β

Ct

)
.

(3.1)

We shift E1 to (0, 0) by taking Ut = Nt and Vt = Ct − β. Consequently, the system (3.1) is expressed
as follows: Ut+1

Vt+1

 =
 1 0

−
β

1+β 0


Ut

Vt

 +
Π1(Ut,Vt, δ)

Π2(Ut,Vt, δ)

 , (3.2)

where

Π1(Ut,Vt, δ) =
( 1
β + β2

)
UtVt +

(
β

1 + β

)
Utδ +

( 1 − 2β
2β2(1 + β)2

)
UtV2

t +

(
β2

2(1 + β)2

)
Utδ

2

+

( 2
(1 + β)2

)
UtVtδ + O((|Ut| + |Vt| + |δ|)4),

Π2(Ut,Vt, δ) =
(

β

2(1 + β)2

)
U2

t +
1

2β
V2

t +

(
β

(1 + β)2

)
UtVt +

(
−

β

6(1 + β)3

)
U3

t −
2

3β2 V3
t

−

(
β

(1 + β)3

)
U2

t Vt −

(1 + 2β + 3β2

2β(1 + β)3

)
UtV2

t + O((|Ut| + |Vt| + |δ|)4).

Next, the linear part of the system (3.2) is transformed into canonical form by using the subsequent
transformation: Ut

Vt

 =
−

1+β
β

0

1 1


Xt

Yt

 . (3.3)

As a result, the system (3.2) reduces to the following form:Xt+1

Yt+1

 =
1 0

0 0


Xt

Yt

 +
Γ(Xt,Yt, δ)

Υ(Xt,Yt, δ)

 , (3.4)

where

Γ(Xt,Yt, δ) = c1X2
t + c2XtYt + c3Xtδ + c4X3

t + c5X2
t Yt + c6X2

t δ + c7XtY2
t

+ c8Xtδ
2 + c9XtYtδ + O((|Xt| + |Yt| + |δ|)4),

Υ(Xt,Yt, δ) = d1Y2
t + d2Xtδ + d3X3

t + d4Y3
t + d5X2

t Yt + d6X2
t δ + d7XtY2

t

+ d8Xtδ
2 + d9XtYtδ + O((|Xt| + |Yt| + |δ|)4),
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c1 =
1
β + β2 , c2 =

1
β + β2 , c3 =

β

1 + β
, c4 =

1 − 2β
2β2(1 + β)2 , c5 =

1 − 2β
β2(1 + β)2 ,

c6 =
2

(1 + β)2 , c7 =
1 − 2β

2β2(1 + β)2 , c8 =
β2

2(1 + β)2 , c9 =
2

(1 + β)2 , d1 =
1

2β
,

d2 = −
β

1 + β
, d3 = −

1
2β2(1 + β)2 , d4 = −

2
3β2 , d5 = −

2 + β
β2(1 + β)2 , d6 = −

2
(1 + β)2 ,

d7 = −
(2 + β)2

2β2(1 + β)2 , d8 = −
β2

2(1 + β)2 , d9 = −
2

(1 + β)2 .

Next, using the center manifold theory, we obtain the center manifold QC of (3.4) about (0, 0) in a
small neighborhood of δ = 0. Thus, there exists a center manifold QC that can be expressed as follows:

QC =

{
(Xt,Yt, δ) ∈ R3

+

∣∣∣∣∣Yt = p1X2
t + p2Xtδ + p3δ

2 + O((|Xt| + |δ|)3)
}
.

Through calculations, we obtain that p1 = 0, p2 = d2 and p3 = 0. Thus, the system (3.4) is restricted to
QC in the manner as follows:

F := Xt+1 = Xt + c1X2
t + c3Xtδ + c4X3

t + (c6 + c2d2)X2
t δ + c8Xtδ

2 + O
(
(|Xt| + |δ|)4

)
. (3.5)

Through simple computations, we obtain

F(0, 0) = 0, FXt(0, 0) = 1, Fδ(0, 0) = 0,

FXtXt(0, 0) = 2c1 =
2
β + β2 , 0,

FXtδ(0, 0) = c3 =
β

1 + β
, 0.

Thus, the model (1.6) experiences TC bifurcation at E1. The next result gives the conditions for the
existence and direction of TC bifurcation in the model (1.6) at E1.

Theorem 3.1. If condition (4) in Theorem 2.1 is fulfilled, then (1.6) undergoes TC bifurcation at E1

when α differs in a close neighborhood of α1 = 1 + 1
β
.

3.2. PD bifurcation at E2

Next, we investigate the PD bifurcation at E2 by considering condition (4) given in Theorem 2.2.
Adding a sufficiently small perturbation parameter δ into the bifurcation parameter β in the
neighborhood of β1 =

−1+3α
1−2α+α2 , the model (1.6) takes the subsequent form:

Nt+1 = Nt exp
(
α1Ct
1+Ct
− 1
)
,

Ct+1 = Ct exp
(
−

Nt
1+Ct
− 1 + β1+δ

Ct

)
.

(3.6)

We translate the positive FP, E2, to (0, 0) by employing the following translation mapping:

Ut = Nt −
α(1 + β1 + δ − α(β1 + δ))

1 − α
, Vt = Ct −

1
−1 + α

.
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Thus, the system (3.6) can be written as follows:Ut+1

Vt+1

 =
 1 2α

− 1
α
−2


Ut

Vt

 +
Π1(Ut,Vt, δ)

Π2(Ut,Vt, δ)

 , (3.7)

where

Π1(Ut,Vt, δ) = a1V2
t + a2UtVt + a3Vtδ + a4V3

t + a5UtV2
t + a6V2

t δ + O((|Ut| + |Vt| + |δ|)4),
Π2(Ut,Vt, δ) = b1U2

t + b2V2
t + b3UtVt + b4Vtδ + b5U3

t + b6V3
t + b7U2

t Vt + b8UtV2
t + b9V2

t δ

+ b10UtVtδ + O((|Ut| + |Vt| + |δ|)4),

a1 = (−3 + α)(−1 + α), a2 = −2 +
1
α
+ α, a3 = (−1 + α)2, a4 =

(−1 + α)2(13 − 8α + α2)
3α

,

a5 =
(−3 + α)(−1 + α)3

2α2 , a6 =
(−3 + α)(−1 + α)3

2α
, b1 =

−1 + α
2α2 , b2 =

(−1 + α)(4 + 9α)
2α

,

b3 =
(−1 + α)(1 + 2α)

α2 , b4 = −
(−1 + α)2

α
, b5 = −

(−1 + α)2

6α3 , b6 = −
(−1 + α)2(2 + 6α + 9α2)

α2 ,

b7 = −
(−1 + α)2(1 + α)

α3 , b8 = −
(−1 + α)2(2 + 8α + 9α2)

2α3 ,

b9 =
(−1 + α)3(1 + 3α)

α2 , b10 =
(−1 + α)3

α2 .

Next, the linear part of system (3.7) is converted into canonical form by using the following
transformation: Ut

Vt

 =
−α −2α

1 1


Xt

Yt

 . (3.8)

Thus, the system (3.7) can be written as follows:Xt+1

Yt+1

 =
−1 0

0 0


Xt

Yt

 +
Γ(Xt,Yt, δ)

Υ(Xt,Yt, δ)

 , (3.9)

Γ(Xt,Yt, δ) = c1X2
t + c2Y2

t + c3XtYt + c4Xtδ + c5Ytδ + c6X3
t + c7Y3

t + c8X2
t Yt + c9X2

t δ + c10XtY2
t

+ c11Y2
t δ + c12XtYtδ + O((|Xt| + |Yt| + |δ|)4),

Υ(Xt,Yt, δ) = d1X2
t + d2Y2

t + d3XtYt + d4X3
t + d5Y3

t + d6X2
t Yt + d7X2

t δ + d8XtY2
t + d9Y2

t δ

+ d10XtYtδ + O((|Xt| + |Yt| + |δ|)4),

c1 = 6(−1 + α), c2 = −5 +
1
α
+ 4α, c3 = −10 +

1
α
+ 9α, c4 = −

(−1 + α)2

α
, c5 = −

(−1 + α)2

α
,

c6 = −
5(−1 + α)2(−1 + 8α + 13α2)

6α2 , c7 = −
2(−1 + α)2(−2 + 4α + 9α2)

3α2 ,

c8 = −
(−1 + α)2(−3 + 14α + 27α2)

α2 , c9 =
(−1 + α)3(1 + 9α)

2α2 ,

c10 = −
(−1 + α)2(−7 + 20α + 45α2)

2α2 , c11 =
(−1 + α)3(1 + 5α)

2α2 , c12 =
(−1 + α)3(1 + 7α)

α2 ,
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d1 = 4 −
1
α
− 3α, d2 =

5
2
−

1
α
−

3α
2
, d3 = 6 −

2
α
− 4α, d4 =

11(−1 + α)2(−1 + 2α + 3α2)
6α2 ,

d5 =
2(−1 + α)2(−2 + α + 5α2)

3α2 , d6 =
(−1 + α)2(−5 + 7α + 14α2)

α2 ,

d7 = −
(−1 + α)3(−1 + 5α)

2α2 , d8 =
(−1 + α)2(−9 + 8α + 24α2)

2α2 ,

d9 = −
(−1 + α)3(−1 + 3α)

2α2 , d10 = −
(−1 + α)3(−1 + 4α)

α2 .

Next, using the center manifold theory, we determine the center manifold QC of (3.9) about (0, 0) in a
small neighborhood of δ = 0. Thus, there exists a center manifold QC that can be expressed as follows:

QC =

{
(Xt,Yt, δ) ∈ R3

+

∣∣∣∣∣Yt = p1X2
t + p2Xtδ + p3δ

2 + O((|Xt| + |δ|)3)
}
.

Through computations, we obtain that p1 = d1, p2 = 0 and p3 = 0. Therefore, (3.9) is restricted to QC

as follows:

F̃ := Xt+1 = −Xt + c1X2
t + c4Xtδ + (c6 + c3d1)X3

t + (c9 + c5d1)X2
t δ + O

(
(|Xt| + |δ|)4

)
. (3.10)

From [32], it can be seen that the conditions for PD bifurcation to occur are l1 , 0 and l2 , 0, where

l1 = F̃δF̃XtXt + 2F̃Xtδ

∣∣∣∣∣
(0,0)
= 2c4 = −

2(−1 + α)2

α
, 0, (3.11)

l2 =
1
2

(F̃XtXt)
2 +

1
3

F̃XtXtXt

∣∣∣∣∣
(0,0)
= 2(c2

1 + c6 + c3d1) = −
(−1 + α)2(1 − 32α + 11α2)

3α2 . (3.12)

From the above discussion, we obtain the next result:

Theorem 3.2. Suppose that condition (4) of Theorem 2.2 is fulfilled. The model (1.6) undergoes PD
bifurcation at E2 if l2 given in (3.12) is non-zero and β varies in a small neighborhood of β1 =

−1+3α
1−2α+α2 .

Moreover, if l2 > 0 (respectively, l2 < 0), then a period-2 orbit of the model (1.6) emanates and it is
stable (respectively, unstable).

Remark 3.1. Conditions for transcritical and period-doubling bifurcations provide deeper insights
into how parameter variations impact system stability. This theoretical advancement is crucial for
understanding and predicting the system’s long-term behavior under different scenarios.

4. Bifurcation and chaos control

Optimizing dynamical systems to accomplish specific performance objectives while avoiding
chaotic behavior is a much-desired goal. Numerous areas of applied research and engineering widely
use chaos control methods. Bifurcations and unstable oscilations have traditionally been considered
negatively in the field of mathematical biology because they have a negative impact on biological
populations’ reproductive abilities. It is feasible to create a controler that can change the bifurcation
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properties of a dynamic model in order to attain certain dynamic qualities and properly govern chaos
in the presence of bifurcations. There are many methods for managing chaos in discrete-time models.
This section examines two distinct control methods: state feedback control and hybrid control
strategies.

Initially, we apply the state feedback control method described in references [33, 34]. The primary
objective of the feedback control is to stabilize the positive fixed point E2, which becomes unstable as
a result of bifurcation. The suggested approach entails transforming the chaotic system into a
piecwise linear system to get an optimal controller that efficiently reduces the upper limit.
Subsequently, the problem of optimization is resolved while maintaining compliance with certain
limitations. The aforementioned method stabilizes chaotic trajectories at an unstable equilibrium
point in the system (1.6). The controlled model via the feedback control method is given by

Nt+1 = Nt exp
(
αCt

1+Ct
− 1
)
− Ht,

Ct+1 = Ct exp
(
−

Nt
1+Ct
− 1 + β

Ct

)
,

(4.1)

where Ht = κ1

(
Nt−

α(1+β−αβ)
1−α

)
+κ2

(
Ct−

1
−1+α

)
is the feedback controlling force with feedback gains κ1 and

κ2. Feedback control aims to adjust the system by adding a corrective term Ht to the state variable Nt+1.
Given that Ct+1 is influenced by Nt, introducing a control term in the second equation is not necessary.
The values of the feedback gains are chosen to control the stability of E2 by moving eigenvalues of
J(E2) into the unit circle. The Jacobian matrix of the model (4.1) at E2 is given by

J(E2) =

1 − κ1 −κ2 + (−1 + α)(−1 + (−1 + α)β)

− 1
α

−
(−1+α)(−1+(−1+α)β)

α

 . (4.2)

The characteristic equation of J(E2) is

ξ2 +

(
κ1 + αβ − 2(1 + β) +

1 + β
α

)
ξ +
−κ2 + κ1(−1 + α)(−1 + (−1 + α)β)

α
= 0. (4.3)

Let ξ1 and ξ2 be the roots of (4.3), and we have

ξ1 + ξ2 = 2 − κ1 + 2β − αβ −
1 + β
α
, (4.4)

ξ1ξ2 =
−κ2 + κ1(−1 + α)(−1 + (−1 + α)β)

α
. (4.5)

Then, the lines of marginal stability are obtained by solving ξ1 = ±1 and ξ1ξ2 = 1. These conditions
ensure that |ξ1,2| < 1. Suppose that ξ1ξ2 = 1, and then Eq (4.5) implies that

L1 :
( (−1 + α)(−1 + (−1 + α)β)

α

)
κ1 −

1
α
κ2 − 1 = 0. (4.6)

Next, considering ξ1 = 1 in Eqs (4.4) and (4.5), we get

L2 : −
(1 + (−1 + α)2β

α

)
κ1 +

1
α
κ2 −

(−1 + α)(−1 + (−1 + α)β)
α

= 0. (4.7)
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Next, considering ξ1 = −1 in Eqs (4.4) and (4.5), we get

L3 :
(
αβ − 2(1 + β) +

1 + β
α

)
κ1 −

1
α
κ2 −

1 − 3α + β − 2αβ + α2β

α
= 0. (4.8)

The stable eigenvalues are contained inside the area bounded by the lines L1, L2, and L3. This stability
region provides guidance for selecting feedback gain values that will achieve the desired stability. By
selecting κ1 and κ2 within this region, it is possible to effectively manage the chaotic dynamics and
stabilize the bifurcation.

Subsequently, we use the hybrid control approach [35] to effectively regulate chaos under the
influence of both types of bifurcation effects. The hybrid control approach is a technique that
integrates state feedback and parameter perturbation to stabilize unstable periodic orbits inside a
model’s chaotic attractor. The hybrid control method uses a weighted combination of the original
model dynamics and the controlled model. The controlled model of (1.6) via the hybrid control
method is given by 

Nt+1 = ρNt exp
(
αCt

1+Ct
− 1
)
+ (1 − ρ)Nt,

Ct+1 = ρCt exp
(
−

Nt
1+Ct
− 1 + β

Ct

)
+ (1 − ρ)Ct,

(4.9)

where 0 < ρ < 1. This interpolation allows for flexible control that adjusts the dynamics without
introducing aggressive or unrealistic modifications. The control parameter ρ in the hybrid method
serves as a fine-tuning mechanism, effectively balancing stability enhancement with dynamic
consistency. The parameter ρ serves as a control parameter, regulating the impact of the original
model (1.6) and the modified model (4.9). The negative values of ρ indicate a contrasting effect from
the initial model (1.6). If the values of ρ exceed 1, the original model (1.6) may have an exaggerated
effect that goes beyond its inherent influence, perhaps resulting in unrealistic or impractical results in
the controlled model (4.9). Models (1.6) and (4.9) have identical FPs. The Jacobian matrix of the
controlled model evaluated at positive FP, E2, is given by

J(E2) =

 1 (−1 + α)(−1 + (−1 + α)β)ρ

−
ρ

α
1 + 2βρ − αβρ − (1+β)ρ

α

 . (4.10)

The eigenvalues of J(E2) are ξ1 = 1 − ρ and ξ2 = 1 − (−1+α)(−1+(−1+α)β)ρ
α

. Thus, we obtain the following
result:

Theorem 4.1. Assume that α > 1 + 1
β
. The FP, E2, of the controlled model (4.9) is a sink if

1
−1 + α

< β <
2α − ρ + αρ
ρ − 2αρ + α2ρ

.

5. Numerical simulations

The purpose of this section is to verify our theoretical results through numerical simulations.
Calculations are done using MATHEMATICA, while MATLAB is used for plotting graphs.

Assume that α = 2.5 and vary β. For this, the TC bifurcation value is β = 1
−1+α ≈ 0.66667.

The corresponding boundary FP for β ≈ 0.66667 is obtained as E1 ≈ (0, 0.66667). By fixing the
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initial conditions as N0 = 0.01 and C0 = 0.7, and varying β ∈ [0.64, 0.70], the bifurcation diagrams,
Figures (1a) and (1b), are plotted. These figures illustrate that the model (1.6) has only one FP, E1, for
β < 0.66667 which is stable. Later, for β > 0.66667, the model possesses two FPs E1 and E2, where
E1 is unstable and E2 is stable. Thus, at β ≈ 0.66667, the two FPs E1 and E2 collide and exchange
their stability. This confirms that the model (1.6) experiences TC bifurcation at E1. This verifies
Theorem 2.1. Next, for α = 2.5, the PD bifurcation value is β1 ≈ 2.88889. The positive FP is obtained
as E2 ≈ (5.55556, 0.66667). The eigenvalues of the Jacobian matrix J(E2) are ξ1 = −1 and ξ2 = 0.
Thus, the model (1.6) undergoes PD bifurcation at E2 when β ≈ 2.88889. Figures (1c) and (1d) depict
bifurcation diagrams by fixing N0 = 5.6 and C0 = 0.7, and varying β ∈ [2.84, 2.96]. The positive FP,
E2, is a sink if β < 2.88889. It loses its stability due to PD bifurcation for β ≥ 2.88889. This confirms
Theorem 2.2.

(a) TC bifurcation diagram for Nt (b) TC bifurcation diagram for Nt

(c) TC bifurcation diagram for Nt (d) TC bifurcation diagram for Nt

Figure 1. Bifurcation diagrams of model (1.6) varying β.

Next, our target is to check the effectiveness of the feedback control method. Considering the values
α = 2.5 and β = 2.9, together with the initial conditions N0 = 5.6 and C0 = 0.7 for the controlled
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model (4.1), and the lines of marginal stability are obtained as follows:

L1 : κ2 = −2.5 + 5.025κ1,

L2 : κ2 = 5.025 + 7.525κ1,

and
L3 : κ2 = −0.025 + 2.525κ1.

Figure (2a) illustrates the stability region of model (4.1), which is bounded by the lines L1, L2, and
L3. In Figures (1c) and (1d), one can see that the original model (1.6) experiences PD bifurcation at
E2 for the considered paramatric values. The controlled model (4.1) is analyzed using feedback gains
κ1 = −0.8 and κ2 = −3. Figure 2 shows the graph of xn in Figure (2c), yn in Figure (2d), and the phase
portrait in Figure (2b) for the model (4.1). Therefore, it can be concluded that the feedback control
technique is effective in managing bifurcation and chaotic behavior.

(a) Time series plot of xn

5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9

N
t

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

C
t

(N
t
,C

t
)

E
2

(b) Time series plot of yn
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(c) Time series plot of yn

0 50 100 150 200 250 300 350 400 450 500

t

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

C
t

(d) Phase portrait

Figure 2. Stability region, phase portrait, and time series plots of model (4.1) using α =
2.5, β = 2.9, κ = −0.8, κ2 = −3, and the initial conditions are N0 = 5.6 andC0 = 0.7.

We shall now evaluate the efficacy of the hybrid control technique. We assume ρ = 0.98, α = 2.5,
and vary β for the controlled model (4.9). If 0.66667 < β < 2.93424, the positive FP, E2, is stable. One
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can observe that the stability region has been expanded in the controlled model (4.9). The bifurcation
diagrams are depicted in Figures (3a) and (3b) by taking the initial values N0 = 5.6 and C0 = 0.7 and
varying β ∈ [2.84, 2.99].

(a) Bifurcation diagram of Nt (b) Bifurcation diagram of Ct

Figure 3. Bifurcation diagrams of model (4.9) by fixing ρ = 0.98, α = 2.5,N0 = 5.6,C0 =

0.7, and varying β ∈ [2.84, 2.99].

Remark 5.1. The numerical simulations clearly demonstrate the shift from stability to instability,
highlighting how feedback and hybrid control approaches successfully postpone or eradicate
bifurcations, thereby stabilizing the system. This not only validates the theoretical predictions but also
underscores the practical importance of these control techniques in preventing chaos, which is crucial
for applications such as optimizing bioreactor operations.

6. Conclusions

This study investigates the dynamics of the discrete-time chemostat model (1.6). The discretization
is obtained using the piecewise constant argument method. In [1], the authors investigated the same
model by discretizing using the forward Euler method. But the forward Euler method is less
dynamically consistent than the piecewise constant argument method. In this study, the existence and
stability of all possible FPs are investigated. Furthermore, TC bifurcation at boundary FP, E1, and PD
bifurcation at the positive FP, E2, are investigated using center manifold and bifurcation theory. The
existence conditions and direction of TC and PD bifurcations are investigated. The thorough
bifurcation analysis provides new insights into the system’s stability behavior, revealing particular
circumstances that cause transcritical and period-doubling bifurcations. These results provide
important theoretical insights into the study of discrete-time biological models. Additionally,
feedback control and hybrid control methods are employed to control bifurcation and chaos in the
model. The application of feedback and hybrid chaos control methods effectively mitigates instability,
further underscoring the practical relevance of the model. Some numerical simulations are presented
to verify our theoretical results.

Although we obtain similar results as in [1], the following are the main differences observed in both
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models (1.6) and (1.2):

• The model (1.2) can produce negative values of N and C for specific initial conditions and
parametric values. This is not reasonable biologically. But our model (1.6) does not produce
negative values of N and C.
• The FPs, E1 and E2, of our discretized model can never be a source. But in [1], the authors

proved that E1 and E2 can be a source under certain conditions on parameters. Their result is not
consistent with the continuous-time model (1.1).
• We investigated TC bifurcation at E1 which was not reported in [1].

This study illustrates that the piecewise constant argument method is more dynamically consistent
than the forward Euler method. Future research may expand this model to include supplementary
environmental variables or investigate alternate discretization techniques to improve dynamic accuracy.
Furthermore, using these control strategies in experimental or industrial settings may provide practical
insights for enhancing microbial growth systems in controlled environments.

Conflict of interest

The author declares that there are no conflicts of interest in this paper.

References

1. K. S. N. Al-Basyouni, A. Q. Khan, Bifurcation analysis of a discrete-time chemostat model, Math.
Probl. Eng., 2023 (2023), 7518261. https://doi.org/10.1155/2023/7518261

2. D. Zhang, L. Wang, Multistability driven by inhibitory kinetics in a discrete-time size-structured
chemostat model, Chaos, 29 (2019), 063112. https://doi.org/10.1063/1.5096661

3. M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J.
Appl. Anal. Comput., 7 (2017), 478–500. https://doi.org/10.11948/2017030

4. A. Khan, I. M. Alsulami, Discrete Leslie’s model with bifurcations and control, AIMS Math., 8
(2023), 22483–22506. https://doi.org/10.3934/math.20231146

5. S. Akhtar, R. Ahmed, M. Batool, N. A. Shah, J. D. Chung, Stability, bifurcation and chaos
control of a discretized Leslie prey-predator model, Chaos Soliton. Fract., 152 (2021), 111345.
https://doi.org/10.1016/j.chaos.2021.111345

6. P. A. Naik, Z. Eskandari, Z. Avazzadeh, J. Zu, Multiple bifurcations of a discrete-time prey-
predator model with mixed functional response, Int. J. Bifurcat. Chaos, 32 (2022), 2250050.
https://doi.org/10.1142/s021812742250050x

7. P. A. Naik, Z. Eskandari, A. Madzvamuse, Z. Avazzadeh, J. Zu, Complex dynamics of a discrete-
time seasonally forced SIR epidemic model, Math. Method. Appl. Sci., 46 (2023), 7045–7059.
https://doi.org/10.1002/mma.8955

8. Z. Jing, J. Yang, Bifurcation and chaos in discrete-time predator-prey system, Chaos Soliton. Fract.,
27 (2006), 259–277. https://doi.org/10.1016/j.chaos.2005.03.040

AIMS Mathematics Volume 9, Issue 12, 33861–33878.

https://dx.doi.org/https://doi.org/10.1155/2023/7518261
https://dx.doi.org/https://doi.org/10.1063/1.5096661
https://dx.doi.org/https://doi.org/10.11948/2017030
https://dx.doi.org/https://doi.org/10.3934/math.20231146
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111345
https://dx.doi.org/https://doi.org/10.1142/s021812742250050x
https://dx.doi.org/https://doi.org/10.1002/mma.8955
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.03.040


33877

9. A. Suleman, R. Ahmed, F. S. Alshammari, N. A. Shah, Dynamic complexity of a
slow-fast predator-prey model with herd behavior, AIMS Math., 8 (2023), 24446–24472.
https://doi.org/10.3934/math.20231247

10. A. Suleman, A. Q. Khan, R. Ahmed, Bifurcation analysis of a discrete Leslie-gower predator-
prey model with slow-fast effect on predator, Math. Method. Appl. Sci., 47 (2024), 8561–8580.
https://doi.org/10.1002/mma.10032

11. R. Ahmed, N. Tahir, N. A. Shah, An analysis of the stability and bifurcation of a discrete-
time predator-prey model with the slow-fast effect on the predator, Chaos, 34 (2024), 033127.
https://doi.org/10.1063/5.0185809

12. J. Wiener, Generalized solutions of functional differential equations, World Scientific, 1993.
https://doi.org/10.1142/9789814343183

13. Q. Zhou, F. Chen, S. Lin, Complex dynamics analysis of a discrete amensalism system with a cover
for the first species, Axioms, 11 (2022), 365. https://doi.org/10.3390/axioms11080365

14. R. Ahmed, S. Akhtar, U. Farooq, S. Ali, Stability, bifurcation, and chaos control of predator-
prey system with additive Allee effect, Commun. Math. Biol. Neurosci., 2023 (2023), 9.
https://doi.org/10.28919/cmbn/7824

15. P. Amster, G. Robledo, D. Sepulveda, Dynamics of a discrete size-structured
chemostat with variable nutrient supply, Discrete Cont. Dyn. B, 28 (2023), 4937–4967.
https://doi.org/10.3934/dcdsb.2023048

16. M. S. Shabbir, Q. Din, M. Safeer, M. A. Khan, K. Ahmad, A dynamically consistent nonstandard
finite difference scheme for a predator-prey model, Adv. Differ. Equ., 2019 (2019), 381.
https://doi.org/10.1186/s13662-019-2319-6

17. R. Ahmed, A. Ahmad, N. Ali, Stability analysis and Neimark-sacker bifurcation of a nonstandard
finite difference scheme for Lotka-Volterra prey-predator model, Commun. Math. Biol. Neurosci.,
2022 (2022), 61. https://doi.org/10.28919/cmbn/7534

18. N. Bairagi, M. Biswas, A predator-prey model with Beddington-DeAngelis functional
response: a non-standard finite-difference method, J. Differ. Equ. Appl., 22 (2016), 581–593.
https://doi.org/10.1080/10236198.2015.1111345

19. M. U. Akhmet, Stability of differential equations with piecewise constant arguments of generalized
type, Nonlinear Anal. Theor., 68 (2008), 794–803. https://doi.org/10.1016/j.na.2006.11.037

20. M. S. Alwan, X. Liu, W. C. Xie, Comparison principle and stability of differential
equations with piecewise constant arguments, J. Franklin I., 350 (2013), 211–230.
https://doi.org/10.1016/j.jfranklin.2012.08.016

21. A. Q. Khan, Global dynamics, bifurcation analysis, and chaos in a discrete Kolmogorov
model with piecewise-constant argument, Math. Probl. Eng., 2021 (2021), 5259226.
https://doi.org/10.1155/2021/5259226

22. F. Bozkurt, A. Yousef, H. Bilgil, D. Baleanu, A mathematical model with piecewise constant
arguments of colorectal cancer with chemo-immunotherapy, Chaos Soliton. Fract., 168 (2023),
113207. https://doi.org/10.1016/j.chaos.2023.113207

AIMS Mathematics Volume 9, Issue 12, 33861–33878.

https://dx.doi.org/https://doi.org/10.3934/math.20231247
https://dx.doi.org/https://doi.org/10.1002/mma.10032
https://dx.doi.org/https://doi.org/10.1063/5.0185809
https://dx.doi.org/https://doi.org/10.1142/9789814343183
https://dx.doi.org/https://doi.org/10.3390/axioms11080365
https://dx.doi.org/https://doi.org/10.28919/cmbn/7824
https://dx.doi.org/https://doi.org/10.3934/dcdsb.2023048
https://dx.doi.org/https://doi.org/10.1186/s13662-019-2319-6
https://dx.doi.org/https://doi.org/10.28919/cmbn/7534
https://dx.doi.org/https://doi.org/10.1080/10236198.2015.1111345
https://dx.doi.org/https://doi.org/10.1016/j.na.2006.11.037
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2012.08.016
https://dx.doi.org/https://doi.org/10.1155/2021/5259226
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113207


33878

23. P. A. Naik, Y. Javaid, R. Ahmed, Z. Eskandari, A. H. Ganie, Stability and bifurcation analysis of
a population dynamic model with Allee effect via piecewise constant argument method, J. Appl.
Math. Comput., 70 (2024), 4189–4218. https://doi.org/10.1007/s12190-024-02119-y

24. A. Khan, I. M. Alsulami, Complicate dynamical analysis of a discrete predator-prey model with a
prey refuge, AIMS Math., 8 (2023), 15035–15057. https://doi.org/10.3934/math.2023768

25. A. A. Khabyah, R. Ahmed, M. S. Akram, S. Akhtar, Stability, bifurcation, and chaos control
in a discrete predator-prey model with strong Allee effect, AIMS Math., 8 (2023), 8060–8081.
https://doi.org/10.3934/math.2023408

26. A. Khan, I. M. Alsulami, S. Hamdani, Controlling the chaos and bifurcations of a discrete prey-
predator model, AIMS Math., 9 (2024), 1783–1818. https://doi.org/10.3934/math.2024087

27. A. Q. Khan, I. M. Alsulami, U. Sadiq, Stability, chaos, and bifurcation analysis of a discrete
chemical system, Complexity, 2022 (2022), 6921934. https://doi.org/10.1155/2022/6921934

28. X. Jiang, X. Chen, M. Chi, J. Chen, On Hopf bifurcation and control for a delay systems, Appl.
Math. Comput., 370 (2020), 124906. https://doi.org/10.1016/j.amc.2019.124906

29. X. Jiang, X. Chen, T. Huang, H. Yan, Bifurcation and control for a predator-prey system with two
delays, IEEE T. Circuits II, 68 (2021), 376–380. https://doi.org/10.1109/tcsii.2020.2987392

30. J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector
fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2

31. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer,
2003. https://doi.org/10.1007/b97481

32. Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer, 2004.
https://doi.org/10.1007/978-1-4757-3978-7

33. G. Chen, X. Dong, From chaos to order, World Scientific, 1998. https://doi.org/10.1142/3033

34. C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-
time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679.
https://doi.org/10.3934/mbe.2022313

35. X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation
and chaos in discrete nonlinear dynamical systems, Chaos Soliton. Fract., 18 (2003), 775–783.
https://doi.org/10.1016/s0960-0779(03)00028-6

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 12, 33861–33878.

https://dx.doi.org/https://doi.org/10.1007/s12190-024-02119-y
https://dx.doi.org/https://doi.org/10.3934/math.2023768
https://dx.doi.org/https://doi.org/10.3934/math.2023408
https://dx.doi.org/https://doi.org/10.3934/math.2024087
https://dx.doi.org/https://doi.org/10.1155/2022/6921934
https://dx.doi.org/https://doi.org/10.1016/j.amc.2019.124906
https://dx.doi.org/https://doi.org/10.1109/tcsii.2020.2987392
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-1140-2
https://dx.doi.org/https://doi.org/10.1007/b97481
https://dx.doi.org/https://doi.org/10.1007/978-1-4757-3978-7
https://dx.doi.org/https://doi.org/10.1142/3033
https://dx.doi.org/https://doi.org/10.3934/mbe.2022313
https://dx.doi.org/https://doi.org/10.1016/s0960-0779(03)00028-6
https://creativecommons.org/licenses/by/4.0

	Introduction
	The existence and local stability analysis of FPs
	Summary

	Bifurcation analysis
	TC bifurcation at E1
	PD bifurcation at E2

	Bifurcation and chaos control
	Numerical simulations
	Conclusions

