This paper is concerned with a family of Reaction-Diffusion systems that we introduced in [
Citation: Henri Berestycki, Samuel Nordmann, Luca Rossi. Modeling the propagation of riots, collective behaviors and epidemics[J]. Mathematics in Engineering, 2022, 4(1): 1-53. doi: 10.3934/mine.2022003
This paper is concerned with a family of Reaction-Diffusion systems that we introduced in [
[1] | K. Afassinou, Analysis of the impact of education rate on the rumor spreading mechanism, Physica A, 414 (2014), 43–52. doi: 10.1016/j.physa.2014.07.041 |
[2] | P. G. Altbach, M. Klemencic, Student activism remains a potent force worldwide, International Higher Education, 76 (2014), 2–3. |
[3] | R. M. Anderson, The population dynamics of infectious diseases: theory and applications, Boston, MA: Springer, 1982. |
[4] | H. Arendt, Crises of the republic : lying in politics; civil disobedience; on violence; thoughts on politics and revolution, Harcourt Brace Jovanovich, 1972. |
[5] | D. Aronson, H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978): 33–76. |
[6] | M. Bages, P. Martinez, Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion, Discrete Cont. Dyn. B, 14 (2010): 817–869. |
[7] | N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, 2 Eds., London: Griffin, 1975. |
[8] | F. M. Bass, A new product growth for model consumer durables, Manage. Sci., 15 (1969), 215–227. |
[9] | P. Baudains, A. Braithwaite, S. D. Johnson, Spatial patterns in the 2011 London riots, Policing, 7 (2013), 21–31. doi: 10.1093/police/pas049 |
[10] | H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sci., 25 (1997), 69–94. |
[11] | H. Berestycki, F. Hamel, H. Matano, Bistable travelling waves around an obstacle, Commun. Pure Appl. Math., 62 (2009), 729–788. doi: 10.1002/cpa.20275 |
[12] | H. Berestycki, B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées, London: Pitman, 1991. |
[13] | H. Berestycki, J. P. Nadal, N. Rodríguez, A model of riot dynamics: shocks, diffusion, and thresholds, Netw. Heterog. Media, 10 (2015), 1–34. doi: 10.3934/nhm.2015.10.1 |
[14] | H. Berestycki, B. Nicolaenko, B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., 16 (1985), 1207–1242. doi: 10.1137/0516088 |
[15] | H. Berestycki, S. Nordmann, L. Rossi, Activity/Susceptibility systems, 2020, preprint. |
[16] | H. Berestycki, N. Rodriguez, Analysis of a heterogeneous model for riot dynamics: the effect of censorship of information, Eur. J. Appl. Math., 27 (2016), 554–582. doi: 10.1017/S0956792515000339 |
[17] | H. Berestycki, N. Rodríguez, L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11 (2013), 1097–1126. doi: 10.1137/12089884X |
[18] | H. Berestycki, L. Rossi, N. Rodríguez, Periodic cycles of social outbursts of activity, J. Differ. Equations, 264 (2018), 163–196. doi: 10.1016/j.jde.2017.09.005 |
[19] | S. Bhattacharya, K. Gaurav, S. Ghosh, Viral marketing on social networks: an epidemiological perspective, Physica A, 525 (2019), 478–490. doi: 10.1016/j.physa.2019.03.008 |
[20] | L. Bonnasse-Gahot, H. Berestycki, M. A. Depuiset, M. B. Gordon, S. Roché, N. Rodriguez, et al. Epidemiological modelling of the 2005 French riots: a spreading wave and the role of contagion, Sci. Rep., 8 (2018), 107. doi: 10.1038/s41598-017-18093-4 |
[21] | J. P. Bouchaud, Crises and collective socio-economic phenomena: simple models and challenges, J. Stat. Phys., 151 (2013), 567–606. doi: 10.1007/s10955-012-0687-3 |
[22] | D. Braha, Global civil unrest: contagion, self-organization, and prediction, PLoS ONE, 7 (2012), 1–9. |
[23] | S. L. Burbeck, W. J. Raine, M. J. Stark, The dynamics of riot growth: an epidemiological approach, J. Math. Sociol., 6 (1978), 1–22. doi: 10.1080/0022250X.1978.9989878 |
[24] | B. Cao, S. H. Han, Z. Jin, Modeling of knowledge transmission by considering the level of forgetfulness in complex networks, Physica A, 451 (2016), 277–287. doi: 10.1016/j.physa.2015.12.137 |
[25] | P. Caroca, C. Cartes, T. P. Davies, J. Olivari, S. Rica, K. Vogt, The anatomy of the 2019 Chilean social unrest, Chaos, 30 (2020), 073129. doi: 10.1063/5.0006307 |
[26] | D. J. Daley, D. G. Kendall, Epidemics and rumors, Nature, 204, (1964), 1118. |
[27] | T. P. Davies, H. M. Fry, A. G. Wilson, S. R. Bishop, A mathematical model of the London riots and their policing, Sci. Rep., 3, (2013), 1303. |
[28] | K. Dietz, Epidemics and rumours: a survey, Journal of the Royal Statistical Society. Series A (General), 130 (1967), 505–528. doi: 10.2307/2982521 |
[29] | R. Ducasse, L. Rossi, Blocking and invasion for reaction-diffusion equations in periodic media, Calc. Var., 57, (2018), 142. |
[30] | M. Edmonds, How Riots Work, 2011. Available from: https://people.howstuffworks.com/riot.htm. |
[31] | J. M. Epstein, Modeling civil violence: an agent-based computational approach, PNAS, 99 (Suppl 3) (2002), 7243–7250. |
[32] | G. Fibich, Bass-SIR model for diffusion of new products in social networks, Phys. Rev. E, 94 (2016), 32305. |
[33] | G. Fibich, Diffusion of new products with recovering consumers, SIAM J. Appl. Math., 77 (2017), 1230–1247. doi: 10.1137/17M1112546 |
[34] | M. Fonoberova, V. A. Fonoberov, I. Mezic, J. Mezic, P. J. Brantingham, A. Societies, et al. Nonlinear dynamics of crime and violence in urban settings an agent-based model of civil violence, JASSS, 15 (2012), 1–15. |
[35] | N. Gaumont, M. Panahi, D. Chavalarias, Reconstruction of the socio-semantic dynamics of political activist Twitter networks – Method and application to the 2017 French presidential election, PLoS ONE, 13 (2018), e0201879. doi: 10.1371/journal.pone.0195800 |
[36] | S. Gavrilets, Collective action problem in heterogeneous groups, Phil. Trans. R. Soc. B, 370 (2015), 20150016. doi: 10.1098/rstb.2015.0016 |
[37] | W. Goffman, V. A. Vaun, A. Newill, Generalization of epidemic theory an application to the transmission of ideas, Nature, 204 (1964), 225–228. doi: 10.1038/204225a0 |
[38] | J. N. C. Gonçalves, H. S. Rodrigues, M. T. T. Monteiro, A contribution of dynamical systems theory and epidemiological modeling to a viral marketing campaign, In: Intelligent systems design and applications, Cham: Springer, 2017,974–983. |
[39] | M. Granovetter, Threshold models of collective behavior, Am. J. Soc., 83 (1978), 1420–1443. doi: 10.1086/226707 |
[40] | N. Gurley, D. K. Johnson, Viral economics: an epidemiological model of knowledge diffusion in economics, Oxford Economic Papers, 69 (2017), 320–331. doi: 10.1093/oep/gpw044 |
[41] | H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. doi: 10.1137/S0036144500371907 |
[42] | H. W. Hethcote, Three basic epidemiological models, In: Applied mathematical ecology, Berlin, Heidelberg: Springer, 1989,119–144. |
[43] | F. C. Hoppensteadt, Mathematical methods of population biology, Cambridge: Cambridge University Press, 1982. |
[44] | A. Huo, N. Song, Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency, Physica A, 461 (2016), 73–84. doi: 10.1016/j.physa.2016.05.028 |
[45] | R. A. Jeffs, J. Hayward, P. A. Roach, J. Wyburn, Activist model of political party growth, Physica A, 442 (2016), 359–372. doi: 10.1016/j.physa.2015.09.002 |
[46] | D. I. Kaiser, M. A. Bettencourt, A. Cintro, C. Castillo-Chavez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A, 364 (2006), 513–536. doi: 10.1016/j.physa.2005.08.083 |
[47] | K. Kawachi, Deterministic models for rumor transmission, Nonlinear Anal. Real, 9 (2008), 1989–2028. doi: 10.1016/j.nonrwa.2007.06.004 |
[48] | W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. doi: 10.1098/rspa.1927.0118 |
[49] | I. Z. Kiss, M. Broom, P. G. Craze, I. Rafols, Can epidemic models describe the diffusion of topics across disciplines?, J. Informetr., 4 (2010), 74–82. doi: 10.1016/j.joi.2009.08.002 |
[50] | J. Lang, H. De Sterck, The Arab spring: A simple compartmental model for the dynamics of a revolution, Math. Soc. Sci., 69 (2014), 12–21. doi: 10.1016/j.mathsocsci.2014.01.004 |
[51] | M. Lewis, S. V. Petrovskii, J. Potts, The mathematics behind biological invasions, Springer International Publishing, 2016. |
[52] | M. Lynch, The Arab uprising : the unfinished revolutions of the new Middle East, PublicAffairs, 2013. |
[53] | H. MacGregor, M. Leach, A. Wilkinson, M. Parker, COVID-19 – a social phenomenon requiring diverse expertise, 2020. Available from: https://www.ids.ac.uk/opinions/covid-19-a-social-phenomenon-requiring-diverse-expertise/. |
[54] | V. Mendez, S. Fedotov, H. Werner, Reaction-transport systems, Springer-Verlag Berlin Heidelberg, 2010. |
[55] | J. Miller, Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., 2 (2017), 35–55. |
[56] | D. Mistry, Q. Zhang, N. Perra, A. Baronchelli, Committed activists and the reshaping of status-quo social consensus, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 92 (2015), 042805. doi: 10.1103/PhysRevE.92.042805 |
[57] | D. Moritz Marutschke, H. Ogawa, Clustering scientific publication trends in cultural context using epidemiological model parameters, Procedia Technology, 18 (2014), 90–95. doi: 10.1016/j.protcy.2014.11.018 |
[58] | A. Morozov, S. Petrovskii, S. Gavrilets, The Yellow Vests Movement - a case of long transient dynamics?, 2019, 10.31235/osf.io/tpyux. |
[59] | E. N. Nepomuceno, D. F. Resende, M. J. Lacerda, A survey of the individual-based model applied in biomedical and epidemiology research, J. Biomed. Res. Rev., 1 (2018), 11–24. |
[60] | M. Perrie, The Russian Peasant Movement of 1905–1907: Its social composition and revolutionary significance, Past & Present, 57 (1972), 123–155. |
[61] | S. Petrovskii, W. Alharbi, A. Alhomairi, A. Morozov, Modelling population dynamics of social protests in time and space : the reaction-diffusion approach, Mathematics, 8 (2020), 78. doi: 10.3390/math8010078 |
[62] | R. M. Raafat, N. Chater, C. Frith, Herding in humans, Trends Cogn. Sci., 13 (2009), 420–428. doi: 10.1016/j.tics.2009.08.002 |
[63] | H. S. Rodrigues, M. Fonseca, Viral marketing as epidemiological model, In: Proceedings of the 15th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, Cadiz, July, 2015. |
[64] | S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, In: Mathematics for life science and medicine, Springer, 2007, 97–122. |
[65] | F. J. Santonja, A. C. Tarazona, R. J. Villanueva, A mathematical model of the pressure of an extreme ideology on a society, Comput. Math. Appl., 56 (2008), 836–846. doi: 10.1016/j.camwa.2008.01.001 |
[66] | A. Schussman, S. A. Soule, Process and protest: accounting for individual protest participation, Social Forces, 84 (2005), 1083–1108. doi: 10.1353/sof.2006.0034 |
[67] | C. I. Siettos, L. Russo, Mathematical modeling of infectious disease dynamics, Virulence, 4 (2013), 295–306. doi: 10.4161/viru.24041 |
[68] | J. Skaza, B. Blais, Modeling the infectiousness of Twitter hashtags, Physica A, 465 (2017), 289–296. doi: 10.1016/j.physa.2016.08.038 |
[69] | L. M. Smith, A. L. Bertozzi, P. J. Brantingham, G. E. Tita, M. Valasik, Adaptation of an ecological territorial model to street gang spatial patterns in los angeles, Discrete Cont. Dyn. A, 32 (2012), 3223–3244. doi: 10.3934/dcds.2012.32.3223 |
[70] | D. A. Snow, R. Vliegenthart, C. Corrigall-Brown, Framing the French riots: a comparative study of frame variation, Social Forces, 86 (2007), 385–415. doi: 10.1093/sf/86.2.385 |
[71] | M. J. A. Stark, W. J. Raine, S. L. Burbeck, K. K. Davison, Some empirical patterns in a riot process, Am. Sociol. Rev., 39 (1974), 865–876. doi: 10.2307/2094159 |
[72] | E. Vynnycky, R. G. White, An introduction to infectious disease modelling, Oxford: Oxford University Press, 2010. |
[73] | L. Wang, B. C. Wood, An epidemiological approach to model the viral propagation of memes, Appl. Math. Model., 35 (2011), 5442–5447. doi: 10.1016/j.apm.2011.04.035 |
[74] | Wikipedia, Mouvement des Gilets jaunes. Available from: https://fr.wikipedia.org/wiki/Mouvement_des_Gilets_jaunes. |
[75] | J. Woo, H. Chen, Epidemic model for information diffusion in web forums: experiments in marketing exchange and political dialog, SpringerPlus, 5 (2016), 66. doi: 10.1186/s40064-016-1675-x |
[76] | C. Yang, N. Rodriguez, A numerical perspective on traveling wave solutions in a system for rioting activity, Appl. Math. Comput., 364 (2020), 124646. |
[77] | P. A. Yurevich, M. A. Olegovich, S. V. Mikhailovich, P. Y. Vasilievich, Modeling conflict in a social system using diffusion equations, Simulation, 94 (2018), 1053–1061. doi: 10.1177/0037549718761573 |
[78] | L. Zhao, J. Wang, Y. Chen, Q. Wang, J. Cheng, H. Cui, SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444–2453. doi: 10.1016/j.physa.2011.12.008 |
[79] | L. Zhao, W. Xie, H. O. Gao, X. Qiu, X. Wang, S. Zhang, A rumor spreading model with variable forgetting rate, Physica A, 392 (2013), 6146–6154. doi: 10.1016/j.physa.2013.07.080 |