Research article Special Issues

Local well-posedness of 1D degenerate drift diffusion equation

  • Received: 07 December 2023 Revised: 15 February 2024 Accepted: 18 February 2024 Published: 28 February 2024
  • This paper proves the well-posedness of locally smooth solutions to the free boundary value problem for the 1D degenerate drift diffusion equation. At the free boundary, the drift diffusion equation becomes a degenerate hyperbolic-Poisson coupled equation. We apply the Hardy's inequality and weighted Sobolev spaces to construct the appropriate a priori estimates, overcome the degeneracy of the system and successfully establish the existence of solutions in the Lagrangian coordinates.

    Citation: La-Su Mai, Suriguga. Local well-posedness of 1D degenerate drift diffusion equation[J]. Mathematics in Engineering, 2024, 6(1): 155-172. doi: 10.3934/mine.2024007

    Related Papers:

  • This paper proves the well-posedness of locally smooth solutions to the free boundary value problem for the 1D degenerate drift diffusion equation. At the free boundary, the drift diffusion equation becomes a degenerate hyperbolic-Poisson coupled equation. We apply the Hardy's inequality and weighted Sobolev spaces to construct the appropriate a priori estimates, overcome the degeneracy of the system and successfully establish the existence of solutions in the Lagrangian coordinates.



    加载中


    [1] M. Burger, H. W. Engl, P. A. Markowich, P. Pietra, Identification of doping profiles in semiconductor devices, Inverse Probl., 17 (2001), 1765. https://doi.org/10.1088/0266-5611/17/6/315 doi: 10.1088/0266-5611/17/6/315
    [2] D. Coutand, H. Lindblad, S. Shkoller, A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum, Commun. Math. Phys., 296 (2010), 559–587. https://doi.org/10.1007/s00220-010-1028-5 doi: 10.1007/s00220-010-1028-5
    [3] D. Coutand, S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Commun. Pure Appl. Math., 64 (2011), 328–366. https://doi.org/10.1002/cpa.20344 doi: 10.1002/cpa.20344
    [4] D. Coutand, S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Rational Mech. Anal., 206 (2012), 515–616. https://doi.org/10.1007/s00205-012-0536-1 doi: 10.1007/s00205-012-0536-1
    [5] P. Degond, P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25–29. https://doi.org/10.1016/0893-9659(90)90130-4 doi: 10.1016/0893-9659(90)90130-4
    [6] P. Degond, P. A. Markowich, A steady-state potential model for semiconductors, Ann. Mat. Pura Appl., 4 (1993), 87–98. https://doi.org/10.1007/BF01765842 doi: 10.1007/BF01765842
    [7] X. M. Gu, Z. Lei, Well-posedness of 1D compressible Euler-Poisson equations with physical vacuum, J. Differ. Equations, 252 (2012), 2160–2188. https://doi.org/10.1016/j.jde.2011.10.019 doi: 10.1016/j.jde.2011.10.019
    [8] L. Hsiao, K. J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations, J. Differ. Equations, 165 (2000), 315–354. https://doi.org/10.1006/jdeq.2000.3780 doi: 10.1006/jdeq.2000.3780
    [9] J. Jang, N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Commun. Pure Appl. Math., 62 (2009), 1327–1385. https://doi.org/10.1002/cpa.20285 doi: 10.1002/cpa.20285
    [10] J. Jang, N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Commun. Pure Appl. Math., 68 (2015), 61–111. https://doi.org/10.1002/cpa.21517 doi: 10.1002/cpa.21517
    [11] J. Y. Li, M. Mei, G. J. Zhang, K. J. Zhang, Steady hydrodynamic model of semiconductors with sonic boundary: (Ⅰ) Subsonic doping profile, SIAM J. Math. Anal., 49 (2017), 4767–4811. https://doi.org/10.1137/17M1127235 doi: 10.1137/17M1127235
    [12] J. Y. Li, M. Mei, G. J. Zhang, K. J. Zhang, Steady hydrodynamic model of semiconductors with sonic boundary: (Ⅱ) Supersonic doping profile, SIAM J. Math. Anal., 50 (2018), 718–734. https://doi.org/10.1137/17M1129477 doi: 10.1137/17M1129477
    [13] Y. P. Li, Relaxation-time limit of the three-dimensional hydrodynamic model with boundary effects, Math. Methods Appl. Sci., 34 (2011), 1202–1210. https://doi.org/10.1002/mma.1433 doi: 10.1002/mma.1433
    [14] S. Q. Liu, X. Y. Xu, J. W. Zhang, Global well-posedness of strong solutions with large oscillations and vacuum to the compressible Navier-Stokes-Poisson equations subject to large and non-flat doping profile, J. Differ. Equations, 269 (2020), 8468–8508. https://doi.org/10.1016/j.jde.2020.06.006 doi: 10.1016/j.jde.2020.06.006
    [15] R. Natalini, T. Luo, Z. P. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810–830. https://doi.org/10.1137/S0036139996312168 doi: 10.1137/S0036139996312168
    [16] T. Luo, Z. P. Xin, H. H. Zeng, Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech. Anal., 213 (2014), 763–831. https://doi.org/10.1007/s00205-014-0742-0 doi: 10.1007/s00205-014-0742-0
    [17] T. P. Liu, T. Yang, Compressible Euler equations with vacuum, J. Differ. Equations, 140 (1997), 223–237. https://doi.org/10.1006/jdeq.1997.3281 doi: 10.1006/jdeq.1997.3281
    [18] T. P. Liu, T. Yang, Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7 (2000), 495–509. https://doi.org/10.4310/MAA.2000.v7.n3.a7 doi: 10.4310/MAA.2000.v7.n3.a7
    [19] S. Mai, X. N. Fu, M. Mei, Local well-posedness of drift-diffusion equation with degeneracy, submitted for publication, 2023.
    [20] P. A. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Ration. Mech. Anal., 129 (1995), 129–145. https://doi.org/10.1007/BF00379918 doi: 10.1007/BF00379918
    [21] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductors equations, Springer Vienna, 1990. https://doi.org/10.1007/978-3-7091-6961-2
    [22] S. Nishibata, M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors, J. Differ. Equations, 249 (2010), 1385–1409. https://doi.org/10.1016/j.jde.2010.06.008 doi: 10.1016/j.jde.2010.06.008
    [23] Y. C. Qiu, K. J. Zhang, On the relaxation limits of the hydrodynamic model for semiconductor devices, Math. Mod. Meth. Appl. Sci., 12 (2002), 333–363. https://doi.org/10.1142/S0218202502001684 doi: 10.1142/S0218202502001684
    [24] Z. Tan, Y. J. Wang, Y. Wang, Stability of steady states of the Navier-Stokes-Poisson equations with non-flat doping profile, SIAM J. Math. Anal., 47 (2015), 179–209. https://doi.org/10.1137/130950069 doi: 10.1137/130950069
    [25] C. J. Van Duyn, L. A. Peletier, Asymptotic behaviour of solutions of a nonlinear diffusion equation, Arch. Rational Mech. Anal., 65 (1977), 363–377. https://doi.org/10.1137/0142005 doi: 10.1137/0142005
    [26] S. Wang, Z. P. Xin, P. A. Markowich, Quasi-neutral limit of the drift diffusion models for semiconductors: the case of general sign-changing doping profile, SIAM J. Math. Anal., 37 (2006), 1854–1889. https://doi.org/10.1137/S0036141004440010 doi: 10.1137/S0036141004440010
    [27] X. Y. Xu, J. W. Zhang, M. H. Zhong, On the Cauchy problem of 3D compressible, viscous, heat-conductive Navier-Stokes-Poisson equations subject to large and non-flat doping profile, Calc. Var., 61 (2022), 161. https://doi.org/10.1007/s00526-022-02280-x doi: 10.1007/s00526-022-02280-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(564) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog