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Abstract: This paper proves the well-posedness of locally smooth solutions to the free boundary
value problem for the 1D degenerate drift diffusion equation. At the free boundary, the drift diffusion
equation becomes a degenerate hyperbolic-Poisson coupled equation. We apply the Hardy’s inequality
and weighted Sobolev spaces to construct the appropriate a priori estimates, overcome the degeneracy
of the system and successfully establish the existence of solutions in the Lagrangian coordinates.
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1. Introduction

We consider the well-known drift diffusion equation which usually describes the motion of
elections in the semiconductor device [21]:ρt − px(ρ) = (ρφx)x,

φxx = ρ −D(x),
(1.1)

where ρ, φ represent the electron density and the electrostatic potential, respectively. The function
D(x) is called the doping profile standing for the density of impurities in semiconductor device, which
plays an important role for the existence of solution to the mathematical models of semiconductor [1,
11, 12, 14, 23, 24, 26, 27]. The pressure p(ρ) is given by γ-law, namely,

p(ρ) = ργ for γ > 1. (1.2)

From the point of view of mathematics, one of the main motivations for studying system (1.1) is
to consider the relation between with the unipolar hydrodynamic semiconductor model [5, 6]. The
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main reason is that the unipolar hydrodynamic semiconductor model reduces to the system (1.1) as
the relaxation time (parameter in the semiconductor model) goes to the zero, which calls the zero-
relaxation limit. However, the system (1.1) is a coupled system of a parabolic equation and the Poisson
equation, but the unipolar hydrodynamic semiconductor model is a coupled system of a hyperbolic
equation and the Poisson equation. This property occurs the initial layer and makes the mathematical
justification of the relaxation limit more complicated. There have been a lot of works to study the
1D zero-relaxation limit such as in [8, 13, 15, 20–23]. In particular, Marcati and Natalini [20] made a
pioneering work in the field and provided new methods and perspectives for the relevant research field.
To the best of our knowledge, beside we [19] proved the local well-posedness of smooth solution for
the spherically symmetric drift diffusion equation, there is still a lack of research in this area. This
paper aims to fill this gap by providing further analysis and investigation on this topic.

In this paper, we mainly discuss the case of γ = 2. Let us introduce the velocity of elections in the
system (1.1) by:

υ(x, t) = −

(
ρ2

)
x

ρ
+ φx,

then the system (1.1) can be written as the hyperbolic-Poisson coupled form:
ρt + (ρυ)x = 0,

υ(x, t) = −

(
ρ2

)
x

ρ
+ φx,

φxx = ρ −D(x).

(1.3)

The aim of this paper is to study the well-posedness for the local smooth solutions to the free
boundary value problem of the system (1.3) in (x, t) ∈ (a(t), b(t)) × (0,T ) with the following free
boundary and the initial conditions:

ρ > 0, in (a(t), b(t)),
ρ(a(t), t) = ρ(b(t), t) = D(a(t)) = D(b(t)) = 0,
da(t)

dt
= υ(a(t), t),

db(t)
dt

= υ(b(t), t),

(ρ, υ)(x, 0) = (ρ0(x), υ0(x)), x ∈ (a(0), b(0)) = (0, 1),

0 < |
d
dx

(ρ2
0)| < ∞, at 0 and 1,

(1.4)

The condition (1.4)2 implies the electron density ρ occurs the vacuum on the free boundary which
makes the system (1.3) being a degenerate system. The condition (1.4)4 confirms that ρ0 is equivalent
to the distance function d(x) of the boundary near x = 0, 1, which is called the physical vacuum
condition for the compressible fluids (cf. [2–4, 9, 10, 17, 18]).

This paper is to investigate the well-posedenss of the local smooth solution for the free boundary
value problem (1.3) and (1.4). Under the Lagrangian variable (2.1), the free boundary value
problem (1.3) and (1.4) will be reduced to an equivalent system with the initial boundary value
problem (2.7) and (2.11). The well-posedness of local smooth solutions to the problem (1.3) and (1.4)
will be stated in Theorem 2.1.
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Note that, due to the degeneracy of the system (1.3) on the moving boundary caused by the pressure
term, the classical theory of Friedrich-Lax-Kato for quasilinear strictly hyperbolic system can not
be directly applied to prove the existence of local smooth solutions. Due to the physical vacuum
condition (1.4)5, the initial data ρ0 is equivalent to the distance function near the boundary. Thus, the
initial data ρ0 plays the role of weight in the weighted Sobolev embedding inequality (1.5), which
is the connection between L2-norm and the weighted Sobolev spaces. Especially, the initial data
ρ0 plays the basic weight in the coefficient of the Lagrangian form (2.7) of the system (1.3). This
observation helps us to overcome the obstacle by using the Hardy’s inequality in a certain weighted
Sobolev space. Compared to the analysis in the previous studies [2–4, 9, 10, 16–18], the Lagrangian
form of the compressible Euler equation is a degenerate quasilinear wave equation, but the Lagrangian
form in (2.7) of the drift diffusion equation (1.3) is a degenerate quasilinear parabolic equation, which
makes some essential difference between two systems.

The remaining sections of this paper are as follows. In Section 2, under the Lagrangian
transformation, we transform the free boundary problem into an initial boundary value problem and
provide the main theorems. In Section 3, we mainly establish energy estimates for higher-order
temporal derivatives and higher-order spatial regularization elliptic derivative estimates. In Section 4,
we prove the existence and uniqueness.

Notation and weighted Sobolev spaces

Let Hk(0, 1) denote the usual Sobolev spaces with the norm ‖ · ‖k, especially ‖ · ‖0 = ‖ · ‖. For real
number l, the Sobolev spaces Hl(0, 1) and the norm ‖ · ‖l are defined by interpolation. The function
space L∞(0, 1) is simplified by L∞.

Let d(x) be distance function to boundary Γ = {0, 1} as d(x) = dist(x,Γ) = min{x, 1 − x} for x ∈ Γ.

For any a > 0 and nonnegative b, the weighted Sobolev space Ha,b is given by

Ha,b := {d
a
2 F ∈ L2(0, 1) :

∫ 1

0
da|∂k

xF|2dx ≤ ∞, 0 ≤ k ≤ b}

with the norm

‖F‖2Ha,b :=
b∑
0

∫ 1

0
da|∂k

xF|dx.

Then, it holds the following embedding: Ha,b(0, 1) ↪→ Hb−a/2(0, 1), with the estimate ‖F‖b−a/2 ≤

C0‖F‖Ha,b . In particular, we have

‖F‖20 ≤ C0

∫ 1

0
d(x)2

(
|F(x)|2 + |F′(x)|2

)
dx, (1.5)

‖F‖21/2 ≤ C0

∫ 1

0
d(x)

(
|F(x)|2 + |F′(x)|2

)
dx. (1.6)

2. Initial boundary value problem

In order to transform the region (0,R(t)) into (0, 1), we define the Lagrangian variables η(x, t) as:

∂tη(x, t) = υ(η(x, t), t), η(x, 0) = x. (2.1)
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We also have:

u(x, t) = υ(η(x, t), t),
f (x, t) = ρ(η(x, t), t),
Φ(x, t) = φ(η(x, t), t).

Then, the first equation of (1.3) is equivalent to

f =
ρ0(x)
ηx

, (2.2)

which in combination with (1.3) leads to

ρ0u +

(
ρ0

2

ηx
2

)
x

= ρ0φη, (2.3)

φηη = ρ −D(η). (2.4)

We have form (2.4)

φη(η) =

∫ η

a(t)

[
ρ(y, t) −D(y)

]
dy + M(t). (2.5)

where M(t) being function of t. Without loss of generality, we take φη(+∞) = −φη(+∞) and obtain

φη(+∞) =
1
2

∫ +∞

−∞

[
ρ(y, t) −D(y)

]
dy,

φη(−∞) = −
1
2

∫ +∞

−∞

[
ρ(y, t) −D(y)

]
dy, (2.6)

and

M(t) = −
1
2

∫ +∞

a(t)

[
ρ(y, t) −D(y)

]
dy +

1
2

∫ a(t)

−∞

[
ρ(y, t) −D(y)

]
dy.

Due to (1.4)2, it holds that ρ(η, t) = D(η) = 0, when η ≤ a(t) or η ≥ b(t), which implies

M(t) = −
1
2

∫ b(t)

a(t)

[
ρ(y, t) −D(y)

]
dy.

By using (2.1), it follows that

φη =
Φx

ηx
=

∫ η

a(t)

[
ρ(y, t) −D(y)

]
dy −

1
2

∫ b(t)

a(t)

[
ρ(y, t) −D(y)

]
dy

=

∫ η(x,t)

η(0,t)

[
ρ(η, t) −D(η)

]
dy −

1
2

∫ η(1,t)

η(0,t)

[
ρ(η, t) −D(η)

]
dy

=

∫ x

0

[
f (y, t) −D(η)

]
ηydy −

1
2

∫ 1

0

[
f (y, t) −D(η)

]
ηydy

=

∫ x

0
ρ0dy −

1
2

∫ 1

0
ρ0dy −

1
2

∫ x

0
D(η)ηydy +

1
2

∫ 1

x
D(η)ηydy.
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Thus, we can rewrite (2.3) as

ρ0u +

(
ρ0

2

ηx
2

)
x

= ρ0F, (2.7)

where

F =

∫ x

0
ρ0dy −

1
2

∫ 1

0
ρ0dy −

1
2

∫ x

0
D(η)ηydy +

1
2

∫ 1

x
D(η)ηydy. (2.8)

Taking ∂t over (2.7), we have

ρ0ut − 2
(
ρ0

2η−3
x ux

)
x

= ρ0Gt, (2.9)

G = −
1
2

∫ x

0
D(η)ηydy +

1
2

∫ 1

x
D(η)ηydy. (2.10)

The initial and boundary conditions (1.4) can be transformed to
ρ0 > 0, in (0, 1),
ρ0 = 0, at x = 0, 1,
(η, u)(x, 0) = (x, υ0(x)), x ∈ (0, 1),
0 < |ρ′0(x)| < +∞, at x = 0, 1.

(2.11)

Define the energy functional E(t) by:

E(t) :=‖u(t)‖2H2(0,1) + ‖ρ0uxx‖
2
H1(0,1) + ‖ρ0uxxx‖|

2
0

+ ‖ut‖
2
H1(0,1) + ‖ uxt‖

2
0 + ‖ρ0uxt‖

2
H1(0,1) + ‖ρ0uxxt‖

2
0

+ ‖ utt‖
2
0 + ‖ρ0uxtt‖

2
0, (2.12)

with the following compatibility conditions for k = 1, 2:

∂k
t u(x, 0) := ∂k−1

t

[
F −

1
ρ0

(
ρ2

0

η2
x
)
]
|t=0. (2.13)

where F is given by (2.8). Throughout the whole paper, we denote P as a generic polynomial function
of its argument and P0 = P(E(0)).

We describe the main result of this paper as follows.

Theorem 2.1. Let the initial data ρ0 ∈ C2[0, 1], the doping profile D ∈ C3[0, 1] satisfying (2.11)
and (2.13), and

E(0) < +∞ and ‖ρ0‖C2[0,1] + ‖D‖C3[0,1] ≤ M0,

with M0 being a positive constant. In addition, let the following degeneracy condition of the doping
profileD satisfying

0 < D(x) < d(x) near 0 and 1, (2.14)

where d(x) is a distance function. Then, there exists a positive constant T such that the problem (2.7)
and (2.11) has a unique smooth solution (η, u) in [0, 1] × [0,T ] satisfying

sup
t∈[0,T ]

E(t) ≤ 2P0. (2.15)
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3. A priori estimates

In this section, we mainly establish the prior estimates. More preciously, Section 3.1 develops high-
order time derivative estimates, while Section 3.2 establishes high-order spatial derivative estimates.
For this purpose, we begin by assuming that there exist a smooth solution (η, u) to the problem (2.7)
and (2.11) on [0, 1] × [0,T ] satisfying

sup
t∈[0,T ]

‖ux‖L∞ ≤ M0, (3.1)

for some constant M0 > 0 determined later, which implies there is a small enough time 0 < T < T < 1
such that for any (x, t) ∈ (0, t) × (0,T ],

1
2
≤ ηx(x, t) ≤

3
2
. (3.2)

3.1. Energy estimates

This subsection mainly proves the high-order time derivative estimates of local smooth solutions
for the initial boundary value problem (2.7) and (2.11).

Lemma 3.1. Assume that (3.1) holds on [0, 1] × [0,T ]. Then it holds that for t ∈ (0,T ],∫ t

0

∫ 1

0
ρ0u2

tttdxds + ‖ρ0uxtt‖
2
0 ≤ E(0) + CtP

(
sup
0≤τ≤t

E(τ)
)
. (3.3)

Proof. From (2.9), we have

ρ0uttt − 2
(
ρ0

2η−3
x ∂

2
t ux

)
x

= 2

ρ2
0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux


x

+ ρ0Gttt. (3.4)

Multiplying (3.4) by ∂3
t u and integrating over (0, t) × (0, 1) shows∫ t

0

∫ 1

0
ρ0u2

tttdxds +

∫ 1

0
ρ2

0η
−3
x (∂2

t ux)2dx

= 2
∫ t

0

∫ 1

0

ρ2
0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux


x

∂3
t udxds +

∫ t

0

∫ 1

0
ρ0Gttt∂

3
t udxds

+

∫ 1

0
ρ0

2η−3
x (∂2

t ux)2(0)dx +

∫ t

0

∫ 1

0
ρ2

0∂tη
−3
x (∂2

t ux)2dxds. (3.5)

The fourth term on the right side of (3.5) is estimated as follows:∣∣∣∣∣∣
∫ t

0

∫ 1

0
ρ2

0∂tη
−3
x (∂2

t ux)2dxds

∣∣∣∣∣∣ ≤ C
∫ t

0
‖ux‖L∞‖ρ0∂

2
t ux‖

2
0ds

≤ CtP
(

sup
0≤τ≤t

E(τ)
)
.

Mathematics in Engineering Volume 6, Issue 1, 155–172.



161

By using the integrating by parts, the first term on the right side of (3.5) is

2
∫ t

0

∫ 1

0

ρ2
0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux


x

∂3
t udxds

= − 2
∫ t

0

∫ 1

0

ρ2
0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux

 ∂3
t uxdxds

= − 2
∫ 1

0
ρ2

0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux∂

2
t uxdx + 2

∫ 1

0
ρ2

0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux∂

2
t ux(0)dx

+ 2
∫ t

0

∫ 1

0

ρ2
0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux


t

∂2
t uxdxds. (3.6)

The first term on the right side of (3.6) is

− 2
∫ 1

0
ρ2

0

2∑
l=1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux∂

2
t uxdx

= −4
∫ 1

0
ρ2

0∂tη
−3
x ∂tux∂

2
t uxdx − 2

∫ 1

0
ρ2

0∂
2
t η
−3
x ux∂

2
t uxdx. (3.7)

The first term on the right side of (3.7) can be controlled as∣∣∣∣∣∣−4
∫ 1

0
ρ2

0∂tη
−3
x ∂tux∂

2
t uxdx

∣∣∣∣∣∣
=

∣∣∣∣∣∣12
∫ 1

0
ρ2

0η
−4
x ux∂tux∂

2
t uxdx

∣∣∣∣∣∣
≤C(ε)‖ux(0)‖2L∞

∫ 1

0
ρ2

0[uxt(0) +

∫ t

0
∂2

t uxdτ]2dx

+ C(ε)‖ρ0uxt‖
2
L∞

∫ t

0
‖uxt‖

2
0dτ + ε

∫ 1

0
ρ2

0(∂2
t ux)2dx

≤P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
, (3.8)

with ε being a positive constant. The second term on the right side of (3.7) is

−2
∫ 1

0
ρ2

0∂
2
t η
−3
x ux∂

2
t uxdx = −24

∫ 1

0
ρ2

0η
−5
x u3

x∂
2
t uxdx + 6

∫ 1

0
ρ2

0η
−4
x uxtux∂

2
t uxdx. (3.9)

Due to the Cauchy inequality, the fundamental theorem of calculus shows that the first term on the
right side of (3.9) can be estimated for any positive constant ε,∣∣∣∣∣∣−24

∫ 1

0
ρ2

0η
−5
x u3

x∂
2
t uxdx

∣∣∣∣∣∣
≤C(ε)

∫ 1

0
ρ2

0u6
x(0)dx + C(ε)

∫ 1

0
ρ2

0u4
x(0)

(∫ t

0
uxtdτ

)2

dx
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≤P(0) + C(ε)‖ρ0u2
x(0)‖2L∞

∫ t

0
‖uxt‖

2
0dτ

+ C(ε)‖ρ0ux(0)‖2L∞‖ux‖
2
L∞

∫ t

0
‖uxt‖

2
0dτ + C(ε)‖ux‖

4
L∞

∫ t

0
‖uxt‖

2
0dτ

+ C(ε)
∫ 1

0
ρ2

0

(∫ t

0
uxtdτ

)2

ux
4dx + ε

∫ 1

0
ρ2

0(∂2
t ux)2dx

≤P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.10)

Similarly, the second term on the right side of (3.9) is∣∣∣∣∣∣6
∫ 1

0
ρ2

0η
−4
x uxtux∂

2
t uxdx

∣∣∣∣∣∣
≤C(ε)

∫ 1

0
ρ2

0ux
2(∂tux)2dx + ε

∫ 1

0
ρ2

0(∂2
t ux)2dx

≤C(ε)‖ux(0)‖2L∞
∫ 1

0
ρ2

0[uxt(0) +

∫ t

0
∂2

t uxdτ]2dx

+ C(ε)‖ρ0uxt‖
2
L∞

∫ t

0
‖uxt‖

2
0dτ + ε

∫ 1

0
ρ2

0(∂2
t ux)2dx

≤P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.11)

The last term on the right side of (3.6) is

2
∫ t

0

∫ 1

0

ρ2
0

2∑
1

Cl
2∂

l
tη
−3
x ∂

2−l
t ux


t

∂2
t uxdxds

=6
∫ t

0

∫ 1

0
ρ2

0∂
2
t η
−3
x ∂tux∂

2
t uxdxds

+ 4
∫ t

0

∫ 1

0
ρ2

0∂tη
−3
x ∂

2
t ux∂

2
t uxdxds + 2

∫ t

0

∫ 1

0
ρ2

0∂
3
t η
−3
x ux∂

2
t uxdxds. (3.12)

We only estimate the last term on the right side of (3.12), while the other terms can be controlled
similarly, as ∣∣∣∣∣∣2

∫ t

0

∫ 1

0
ρ2

0∂
3
t η
−3
x ux∂

2
t uxdxds

∣∣∣∣∣∣
≤C

∫ t

0
(‖ux‖

8
L∞ + ‖ρ0∂

2
t ux‖

2
0)ds + C

∫ t

0
(‖ux‖

4
L∞‖ρ0uxt‖

2
0 + ‖ρ0∂

2
t ux‖

2
0)ds

+ C‖ux‖L∞

∫ t

0
‖ρ0∂

2
t ux‖

2
0ds

≤CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.13)
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By (2.10), a divert computation shows

|Gttt| ≤ C(‖u‖3L∞ + ‖u‖L∞‖ut‖L∞ + ‖u‖2L∞ + ‖utt‖L2

+ ‖ux‖L∞‖ut‖L∞ + ‖u‖L∞‖uxt‖L2 + ‖uxtt‖L2), (3.14)

where C is a positive constant depending on ‖D‖C3[0,1]. Then, we have the estimate of the second term
on the right side of (3.5) for any positive constant ε,∣∣∣∣∣∣

∫ t

0

∫ 1

0
ρ0Gttt∂

3
t udxds

∣∣∣∣∣∣
≤C(ε)

∫ t

0

∫ 1

0
ρ2

0G
2
tttdxds + ε

∫ t

0

∫ 1

0
(∂3

t u)2dxds

≤C(ε)
∫ t

0
‖ρ0Gttt‖

2
0ds + ε

∫ t

0

∫ 1

0
(∂3

t u)2dxds

≤CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.15)

Substituting (3.6)–(3.15) into (3.5) obtain (3.3). This is the end of proof. �

3.2. Elliptic type estimates

The primary focus of this subsection is to establish the high-order spatial derivative estimates
in (3.16) for the local smooth solution of the problem (2.7) and (2.11) on the interval [0, 1] × [0,T ],
assuming (3.1).

Lemma 3.2. Assume that (3.1) holds on [0, 1] × [0,T ]. Then it holds that for t ∈ (0,T ],

‖ (ux, ρ0uxx, uxt, ρ0uxxt, ρ0uxxx) ‖20

≤ E(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.16)

Proof. We divide our proof into the following three steps.

Step1. Estimate of ‖ (ρ0uxx, ux) ‖20.
We can rewrite (2.9) as

ρ0uxx + 2ρ0xux =
1
2

ut − ρ0(η−3
x − 1)uxx − 2ρ0x(η

−3
x − 1)ux

+ 3ρ0η
−4
x uxηxx −

1
2

Gt. (3.17)

Taking L2-norm, we have

‖ρ0uxx + 2ρ0xux‖
2
0 ≤‖

1
2

ut‖
2
0 + ‖ρ0(η−3

x − 1)uxx‖
2
0 + ‖2ρ0x(η

−3
x − 1)ux‖

2
0

+ ‖3ρ0η
−4
x uxηxx‖

2
0 + ‖

1
2

Gt‖
2
0. (3.18)
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The left-hand side of (3.18) is estimated as follows

‖ρ0uxx + 2ρ0xux‖
2
0

=‖ρ0uxx‖
2
0 + 2‖ρ0xux‖

2
0 − 2

∫ 1

0
ρ0ρ0xxu

2
xdx

≥‖ρ0uxx‖
2
0 + 2‖ρ0xux‖

2
0 − P(0) −CtP

(
sup
0≤τ≤t

E(τ)
)
, (3.19)

where we have used

2
∫ 1

0
ρ0ρ0xxu

2
xdx = 2

∫ 1

0
ρ0ρ0xx(ux(0) +

∫ t

0
uxtdτ)2dx

≤ P(0) + ‖ρ0ρ0xx‖L∞

∫ t

0
‖uxt‖

2
0dτ

≤ P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.20)

The first term on the right side of (3.18) is estimated as follows:

‖
1
2

ut‖
2
0 ≤ C‖ut‖

2
0 = C‖ut(0) +

∫ t

0
uttdτ‖20 ≤ P(0) + CtP

(
sup
0≤τ≤t

E(τ)
)
. (3.21)

Similarly, we have the estimates of the other terms on the ride side of (3.18) as

‖ρ0(η−3
x − 1)uxx‖

2
0 ≤ C

∫ t

0
‖ux‖

2
L∞dτ‖ρ0uxx‖

2
0 ≤ CtP

(
sup
0≤τ≤t

E(τ)
)
,

‖2ρ0x(η
−3
x − 1)ux‖

2
0 ≤ C

∫ t

0
‖ux‖

2
L∞dτ‖ux‖

2
0 ≤ CtP

(
sup
0≤τ≤t

E(τ)
)
,

and

‖3ρ0η
−4
x uxηxx‖

2
0 ≤ C

∫ t

0
‖ρ0uxx‖

2
0dτ‖ux‖

2
L∞ ≤ CtP

(
sup
0≤τ≤t

E(τ)
)
.

Finally, we have for the last term on the ride side of (3.18)

‖
1
2

Gt‖
2
0 ≤ C‖Gt‖

2
0 ≤ C‖u‖20 + C‖ux‖

2
0

= C‖u(0) +

∫ t

0
utdτ‖20 + C‖ux(0) +

∫ t

0
uxtdτ‖20

≤ P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.22)

From (3.18)–(3.22), we have

‖ρ0uxx‖
2
0 + ‖ux‖

2
0 ≤ ‖P(0) + CtP

(
sup
0≤τ≤t

E(τ)
)
. (3.23)
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Step 2. Estimate of ‖ (ρ0uxxt, uxt) ‖20.
Taking ∂t over (3.17), we have

ρ0uxxt + 2ρ0xuxt =
1
2

utt + 6ρ0η
−4
x uxuxx − ρ0(η−3

x − 1)uxxt

+ 6ρ0xη
−4
x u2

x − 2ρ0x(η
−3
x − 1)uxt

− 12ρ0η
−5
x u2

xηxx + 3ρ0η
−4
x uxtηxx −

1
2

Gtt. (3.24)

Taking L2-norm, we have

‖ρ0uxxt + 2ρ0xuxt‖
2
0 ≤‖

1
2

utt‖
2
0 + ‖6ρ0η

−4
x uxuxx‖

2
0 + ‖ρ0(η−3

x − 1)uxxt‖
2
0

+ ‖6ρ0xη
−4
x u2

x‖
2
0 + ‖2ρ0x(η

−3
x − 1)uxt‖

2
0

+ ‖12ρ0η
−5
x u2

xηxx‖
2
0 + ‖3ρ0η

−4
x uxtηxx‖

2
0 + ‖

1
2

Gtt‖
2
0. (3.25)

The first term on the right side of (3.25) is estimated as follows:

‖
1
2

utt‖
2
0 ≤ C‖utt‖

2
0 ≤ C

∫ 1

0
ρ2

0

(
u2

tt + u2
xtt

)
dx

≤ P(0) + C
∫ t

0
‖ρ0uttt‖

2
0dτ + C

∫ 1

0
ρ2

0u2
xttdx

≤ P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.26)

The second term on the right side of (3.25) is

‖6ρ0η
−4
x uxuxx‖

2
0

≤C‖ρ0ux(0)
(
uxx(0) +

∫ t

0
uxxtdτ

)
‖20 + C‖ρ0

∫ t

0
uxtdτuxx‖

2
0

≤P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
. (3.27)

Similarly, we have

‖ρ0

(
η−3

x − 1
)

uxxt‖
2
0 ≤C‖ρ0

∫ t

0
uxdτuxxt‖

2
0

≤C‖ρ0uxxt‖
2
0

∫ t

0
‖ux‖

2
L∞dτ

≤CtP
(

sup
0≤τ≤t

E(τ)
)
,

and
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‖6ρ0xη
−4
x u2

x‖
2
0

≤C‖ux(0)‖4L∞ + C‖ux(0)‖2L∞
∫ t

0
‖uxt‖

2
0dτ + C‖ux‖

2
L∞

∫ t

0
‖uxt‖

2
0dτ

≤P(0) + CtP
(

sup
0≤τ≤t

E(τ)
)
.

We turn to estimate the seventh term on the ride side of (3.25) as

‖
1
2

Gtt‖
2
0 ≤C

(
‖u‖2L∞ + ‖ut‖L2 + ‖u‖L∞‖ux‖L2 + ‖uxt‖L2

)
≤ P(0) + CtP

(
sup
0≤τ≤t

E(τ)
)
.

We can also estimate the other terms on the right side of (3.25) and obtain similar to (3.23)

‖ρ0uxxt‖
2
0 + ‖uxt‖

2
0 ≤ P(0) + CtP

(
sup
0≤τ≤t

E(τ)
)
. (3.28)

Step 3. Estimate of ‖ (ρ0uxxx, uxx) ‖20.
Taking ∂x over (3.17), we have

ρ0uxxx + 3ρ0xuxx

=
1
2

uxt − 3ρ0x

(
η−3

x − 1
)

uxx + 3ρ0η
−4
x ηxxuxx

− ρ0

(
η−3

x − 1
)

uxxx − 2ρ0xx

(
η−3

x − 2
)

ux + 9ρ0xη
−4
x ηxxux

− 12ρ0η
−5
x η

2
xxux + 3ρ0η

−4
x ηxxxux −

1
2

Gtx. (3.29)

Taking L2-norm, we have

‖ρ0uxxx + 3ρ0xuxx‖
2
0

≤ ‖
1
2

uxt‖
2
0 + ‖3ρ0x

(
η−3

x − 1
)

uxx‖
2
0 + ‖3ρ0η

−4
x ηxxuxx‖

2
0

+ ‖ρ0

(
η−3

x − 1
)

uxx‖
2
0 + ‖2ρ0xx

(
η−3

x − 2
)

ux‖
2
0 + ‖3ρ0xη

−4
x ηxxux‖

2
0

+ ‖12ρ0η
−5
x η

2
xxux‖

2
0 + ‖3ρ0η

−4
x ηxxxux‖

2
0 + ‖

1
2

Gtx‖
2
0. (3.30)

The estimate for the third term on the right-hand side of (3.30) is given by

‖3ρ0η
−4
x ηxxuxx‖

2
0

≤C‖ρ0

∫ t

0
uxxdτuxx‖

2
0

≤C‖uxx‖
2
0

∫ t

0
‖ρ0uxx‖

2
L∞dτ

≤CtP
(

sup
0≤τ≤t

E(τ)
)
.
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We make the following procedure for the seventh term on the right-hand side of (3.30)

‖12ρ0η
−5
x η

2
xxux‖

2
0 ≤ C‖ρ0η

2
xxux‖

2
0 ≤ C‖ρ0

(∫ t

0
uxxdτ

)2

ux‖
2
0

≤ C‖ux‖
2
L∞

∫ t

0
‖ρ0uxx‖

2
L∞dτ

∫ t

0
‖uxx‖

2
0dτ

≤ CtP
(

sup
0≤τ≤t

E(τ)
)
.

Considering the eighth term on the right-hand side of (3.30), we can obtain the following estimate

‖3ρ0η
−4
x ηxxxux‖

2
0

≤C‖ρ0

∫ t

0
uxxxdτux‖

2
0

≤C‖ux‖
2
L∞

∫ t

0
‖ρ0uxxx‖

2
0dτ

≤CtP
(

sup
0≤τ≤t

E(τ)
)
.

We can control the right-hand side of (3.30) by a similar estimate to (3.28), and obtain

‖ρ0uxxx‖
2
0 + ‖uxx‖

2
0 ≤ P(0) + CtP

(
sup
0≤τ≤t

E(τ)
)
. (3.31)

Finally, we have (3.16) from (3.23), (3.28) and (3.31). �

4. Well-posedness of local smooth solutions

By (1.5), (1.6), (3.3), (3.16) and the fundamental theorem of calculous, we can get

E(t) ≤ P0 + CtP
(

sup
0≤τ≤t

E(τ)
)
, (4.1)

which implies (2.15), where we have used a polynomial-type inequality introduced in [2]. Based on the
a priori estimate in (3.1), this subsection is contributed to prove the existence of local smooth solutions
for the problem (2.7) and (2.11) on [0, 1] × [0,T ] by the similar method in [7] by using the fixed point
theorem. We omit the detailed proof here.

We describe the uniqueness of smooth solutions in the following Lemma 4.1.

Lemma 4.1. Assume that (η, u) is a solution to the problem (2.7) and (2.11) corresponding to the
initial data (ρ0, u0) satisfying (2.15) and

η = x0 +

∫ t

0
udτ. (4.2)

Then, there exists a positive time 0 < T̃ < T such that for any [0, 1] × [0, T̃ ], the solution (η, u) is
unique.
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Proof. Set

η1 = x +

∫ t

0
u1dτ, η2 = x +

∫ t

0
u2dτ,

R = η1 − η2, Rt = U = u1 − u2. (4.3)

Substituting (4.3) into (2.7) and subtracting the resulting equations, we write the resulting equation as

ρ0 (u1 − u2) +

(
ρ2

0

η2
1x

−
ρ2

0

η2
2x

)
x

=
1
2
ρ0

∫ 1

x
[D (η1) η1y −D (η2) η2y]dy

−
1
2
ρ0

∫ x

0
[D (η1) η1y −D (η2) η2y]dy. (4.4)

By a straightforward calculation, we can obtain

ρ0U −
(
ρ2

0RxG1

)
x

=
1
2
ρ0

∫ 1

x
[D (η1) Ry + G2R]dy

−
1
2
ρ0

∫ x

0
[D (η2) Ry + G3R]dy, (4.5)

where

G1 =
η1x + η2x

η2
1xη

2
2x

,

G2 = η2x

∫ 1

0
Dη[η2 + µ (η1 − η2)]dµ,

G3 = η1x

∫ 1

0
Dη[η2 + µ (η1 − η2)]dµ.

Due to (2.15), there exists a positive constant K0 such that

‖ηx‖L∞ + ‖ux‖L∞ + ‖Dη‖L∞ ≤ K0, D (η) ≤ Cρ0,

3∑
i=1

‖Gi‖L∞ ≤ C (K0), ‖∂tG1‖L∞ ≤ C (K0). (4.6)

Multiplying (4.5) by R, integrating the resultant equation over (0, t) × (0, 1), then the integration by
parts implies

1
2

∫ 1

0
ρ0R2dx +

∫ t

0

∫ 1

0
ρ2

0R2
xG1dxds

=
1
2

∫ t

0

∫ 1

0
ρ0

∫ 1

x

[
D (η1) Ry + G2R

]
dyRdxds

−
1
2

∫ t

0

∫ 1

0
ρ0

∫ x

0

[
D (η2) Ry + G3R

]
dyRdxds. (4.7)
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From (2.14), we have∣∣∣∣∣∣12
∫ t

0

∫ 1

0
ρ0

∫ 1

x
[D (η1) Ry + G2R]dyRdxds

∣∣∣∣∣∣
≤ C

∫ t

0

∫ 1

0
ρ0R2dxds + C

∫ t

0

∫ 1

0
ρ0

{∫ 1

x
[D (η1) Ry + G2R]dy

}2

dxds

≤ C
∫ t

0
‖ρ

1
2
0 R‖20ds + C

∫ t

0

(
‖ρ0Rx‖

2
0 + ‖ρ

1
2
0 R‖20

)
ds

≤ C
∫ t

0

(
‖ρ0Rx‖

2
0 + ‖ρ

1
2
0 R‖20

)
ds. (4.8)

Similarly, the second term on the ride side of (4.7) can be controlled by

C
∫ t

0

(
‖ρ0Rx‖

2
0 + ‖ρ

1
2
0 R‖20

)
ds.

Thus,

1
2

∫ 1

0
ρ0R2dxds +

∫ t

0

∫ 1

0
ρ2

0R2
xG1dxds ≤ C

∫ t

0

(
‖ρ0Rx‖

2
0 + ‖ρ

1
2
0 R‖20

)
ds. (4.9)

Multiplying (4.5) by Uand integration over (0, t) × (0, 1), we have similar to (4.7)∫ t

0

∫ 1

0
ρ0U2dxds +

1
2

∫ 1

0
ρ2

0R2
xG1dx

=
1
2

∫ t

0

∫ 1

0
ρ0

∫ 1

x
[D (η1) Ry + G2R]dyUdxds

−
1
2

∫ t

0

∫ 1

0
ρ0

∫ x

0
[D (η2) Ry + G3R]dyUdxds +

1
2

∫ t

0

∫ 1

0
ρ2

0R2
xG1dxds. (4.10)

Similar to (4.8), it follows that∣∣∣∣∣∣12
∫ t

0

∫ 1

0
ρ0

∫ 1

x
[D (η1) Ry + G2R]dyUdxds

∣∣∣∣∣∣
≤ε

∫ t

0

∫ 1

0
ρ0U2dxds + C

∫ t

0

∫ 1

0
ρ0

{∫ 1

x
[D (η1) Ry + G2R]dy

}2

dxds

≤ε

∫ t

0

∫ 1

0
ρ0U2dxds + C

∫ t

0
‖ρ0Rx‖

2
0 +

(
‖ρ

1
2
0 R‖20

)
ds.

Thus, we have ∫ t

0

∫ 1

0
ρ0U2dxds +

1
2

∫ 1

0
ρ2

0R2
xG1dx

≤ε

∫ t

0

∫ 1

0
ρ0U2dxds + C

∫ t

0
‖ρ0Rx‖

2
0ds + ‖ρ

1
2
0 R‖20. (4.11)
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From (4.9) and (4.11), we obtain

∫ t

0

∫ 1

0
ρ0U2dxds +

∫ t

0

∫ 1

0
ρ2

0R2
xG1dxds

+
1
2

∫ 1

0
ρ0R2dx +

1
2

∫ 1

0
ρ2

0R2
xG1dx

≤C (K0)
∫ t

0

(
‖ρ0Rx‖

2
0 + ‖ρ

1
2
0 R‖20

)
ds.

By applying the Gronwall inequality, it holds that∫ 1

0
[ρ0 (η1 − η2)2 + ρ2

0 (η1x − η2x)2]dx ≤ 0,

which gives

η1 = η2 and u1 = u2.

�

5. Conclusions

In this paper, we have obtained the well-posedness of local smooth solutions to the free boundary
value problem in a one-dimensional degenerate drift-diffusion model, which becomes a degenerate
hyperbolic-Poisson coupled equation at the free boundary. We have applied the Hardy’s inequality
and the the weighted Sobolev spaces to construct the appropriate a priori estimates, and establish the
existence of solutions in the Lagrangian coordinates. Our result and the methods are new for the
drift diffusion equation. In future research, we will continue to improve the method and study the
related topics on the free boundary value problems to the drift diffusion equations, mainly including
the well-posedness and the large time behaviors to the local and global smooth solutions for the one-
dimensional, spherically symmetric, cylindrical symmetric and the three dimensional cases.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

We would like to express our sincere thanks to the referee for the valuable and helpful suggestions
and comments, which made a significant change of the paper. The research was partially supported by
the National Natural Science Foundation of China (No. 11601246, and No. 11971014), Young science
and technology talents cultivation project of Inner Mongolia University (No. 21221505), Research and
Educational Reform Project for Graduate Education of Inner Mongolia Autonomous Region in 2023
(No. JGCG2023007) and Outstanding Youth fund of Inner Mongolia Natural Science Foundation (No.
2023JQ13).

Mathematics in Engineering Volume 6, Issue 1, 155–172.



171

Conflict of interest

The authors declare no conflicts of interest.

References

1. M. Burger, H. W. Engl, P. A. Markowich, P. Pietra, Identification of doping profiles
in semiconductor devices, Inverse Probl., 17 (2001), 1765. https://doi.org/10.1088/0266-
5611/17/6/315

2. D. Coutand, H. Lindblad, S. Shkoller, A priori estimates for the free-boundary 3D
compressible Euler equations in physical vacuum, Commun. Math. Phys., 296 (2010), 559–587.
https://doi.org/10.1007/s00220-010-1028-5

3. D. Coutand, S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D
compressible Euler equations in physical vacuum, Commun. Pure Appl. Math., 64 (2011), 328–
366. https://doi.org/10.1002/cpa.20344

4. D. Coutand, S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-
dimensional compressible Euler equations in physical vacuum, Arch. Rational Mech. Anal., 206
(2012), 515–616. https://doi.org/10.1007/s00205-012-0536-1

5. P. Degond, P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for
semiconductors, Appl. Math. Lett., 3 (1990), 25–29. https://doi.org/10.1016/0893-9659(90)90130-
4

6. P. Degond, P. A. Markowich, A steady-state potential model for semiconductors, Ann. Mat. Pura
Appl., 4 (1993), 87–98. https://doi.org/10.1007/BF01765842

7. X. M. Gu, Z. Lei, Well-posedness of 1D compressible Euler-Poisson equations with physical
vacuum, J. Differ. Equations, 252 (2012), 2160–2188. https://doi.org/10.1016/j.jde.2011.10.019

8. L. Hsiao, K. J. Zhang, The relaxation of the hydrodynamic model for semiconductors
to the drift-diffusion equations, J. Differ. Equations, 165 (2000), 315–354.
https://doi.org/10.1006/jdeq.2000.3780

9. J. Jang, N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum
singularity, Commun. Pure Appl. Math., 62 (2009), 1327–1385. https://doi.org/10.1002/cpa.20285

10. J. Jang, N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum,
Commun. Pure Appl. Math., 68 (2015), 61–111. https://doi.org/10.1002/cpa.21517

11. J. Y. Li, M. Mei, G. J. Zhang, K. J. Zhang, Steady hydrodynamic model of semiconductors
with sonic boundary: (I) Subsonic doping profile, SIAM J. Math. Anal., 49 (2017), 4767–4811.
https://doi.org/10.1137/17M1127235

12. J. Y. Li, M. Mei, G. J. Zhang, K. J. Zhang, Steady hydrodynamic model of semiconductors
with sonic boundary: (II) Supersonic doping profile, SIAM J. Math. Anal., 50 (2018), 718–734.
https://doi.org/10.1137/17M1129477

13. Y. P. Li, Relaxation-time limit of the three-dimensional hydrodynamic model with boundary effects,
Math. Methods Appl. Sci., 34 (2011), 1202–1210. https://doi.org/10.1002/mma.1433

Mathematics in Engineering Volume 6, Issue 1, 155–172.

https://dx.doi.org/https://doi.org/10.1088/0266-5611/17/6/315
https://dx.doi.org/https://doi.org/10.1088/0266-5611/17/6/315
https://dx.doi.org/https://doi.org/10.1007/s00220-010-1028-5
https://dx.doi.org/https://doi.org/10.1002/cpa.20344
https://dx.doi.org/https://doi.org/10.1007/s00205-012-0536-1
https://dx.doi.org/https://doi.org/10.1016/0893-9659(90)90130-4
https://dx.doi.org/https://doi.org/10.1016/0893-9659(90)90130-4
https://dx.doi.org/https://doi.org/10.1007/BF01765842
https://dx.doi.org/https://doi.org/10.1016/j.jde.2011.10.019
https://dx.doi.org/https://doi.org/10.1006/jdeq.2000.3780
https://dx.doi.org/https://doi.org/10.1002/cpa.20285
https://dx.doi.org/https://doi.org/10.1002/cpa.21517
https://dx.doi.org/https://doi.org/10.1137/17M1127235
https://dx.doi.org/https://doi.org/10.1137/17M1129477
https://dx.doi.org/https://doi.org/10.1002/mma.1433


172

14. S. Q. Liu, X. Y. Xu, J. W. Zhang, Global well-posedness of strong solutions with
large oscillations and vacuum to the compressible Navier-Stokes-Poisson equations subject
to large and non-flat doping profile, J. Differ. Equations, 269 (2020), 8468–8508.
https://doi.org/10.1016/j.jde.2020.06.006

15. R. Natalini, T. Luo, Z. P. Xin, Large time behavior of the solutions to a
hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810–830.
https://doi.org/10.1137/S0036139996312168

16. T. Luo, Z. P. Xin, H. H. Zeng, Well-posedness for the motion of physical vacuum of the three-
dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech.
Anal., 213 (2014), 763–831. https://doi.org/10.1007/s00205-014-0742-0

17. T. P. Liu, T. Yang, Compressible Euler equations with vacuum, J. Differ. Equations, 140 (1997),
223–237. https://doi.org/10.1006/jdeq.1997.3281

18. T. P. Liu, T. Yang, Compressible flow with vacuum and physical singularity, Methods Appl. Anal.,
7 (2000), 495–509. https://doi.org/10.4310/MAA.2000.v7.n3.a7

19. S. Mai, X. N. Fu, M. Mei, Local well-posedness of drift-diffusion equation with degeneracy,
submitted for publication, 2023.

20. P. A. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and
relaxation to the drift-diffusion equation, Arch. Ration. Mech. Anal., 129 (1995), 129–145.
https://doi.org/10.1007/BF00379918

21. P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductors equations, Springer Vienna,
1990. https://doi.org/10.1007/978-3-7091-6961-2

22. S. Nishibata, M. Suzuki, Relaxation limit and initial layer to hydrodynamic
models for semiconductors, J. Differ. Equations, 249 (2010), 1385–1409.
https://doi.org/10.1016/j.jde.2010.06.008

23. Y. C. Qiu, K. J. Zhang, On the relaxation limits of the hydrodynamic model
for semiconductor devices, Math. Mod. Meth. Appl. Sci., 12 (2002), 333–363.
https://doi.org/10.1142/S0218202502001684

24. Z. Tan, Y. J. Wang, Y. Wang, Stability of steady states of the Navier-Stokes-Poisson
equations with non-flat doping profile, SIAM J. Math. Anal., 47 (2015), 179–209.
https://doi.org/10.1137/130950069

25. C. J. Van Duyn, L. A. Peletier, Asymptotic behaviour of solutions of a nonlinear diffusion equation,
Arch. Rational Mech. Anal., 65 (1977), 363–377. https://doi.org/10.1137/0142005

26. S. Wang, Z. P. Xin, P. A. Markowich, Quasi-neutral limit of the drift diffusion models for
semiconductors: the case of general sign-changing doping profile, SIAM J. Math. Anal., 37 (2006),
1854–1889. https://doi.org/10.1137/S0036141004440010

27. X. Y. Xu, J. W. Zhang, M. H. Zhong, On the Cauchy problem of 3D compressible, viscous, heat-
conductive Navier-Stokes-Poisson equations subject to large and non-flat doping profile, Calc. Var.,
61 (2022), 161. https://doi.org/10.1007/s00526-022-02280-x

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 6, Issue 1, 155–172.

https://dx.doi.org/https://doi.org/10.1016/j.jde.2020.06.006
https://dx.doi.org/https://doi.org/10.1137/S0036139996312168
https://dx.doi.org/https://doi.org/10.1007/s00205-014-0742-0
https://dx.doi.org/https://doi.org/10.1006/jdeq.1997.3281
https://dx.doi.org/https://doi.org/10.4310/MAA.2000.v7.n3.a7
https://dx.doi.org/https://doi.org/10.1007/BF00379918
https://dx.doi.org/https://doi.org/10.1007/978-3-7091-6961-2
https://dx.doi.org/https://doi.org/10.1016/j.jde.2010.06.008
https://dx.doi.org/https://doi.org/10.1142/S0218202502001684
https://dx.doi.org/https://doi.org/10.1137/130950069
https://dx.doi.org/https://doi.org/10.1137/0142005
https://dx.doi.org/https://doi.org/10.1137/S0036141004440010
https://dx.doi.org/https://doi.org/10.1007/s00526-022-02280-x
https://creativecommons.org/licenses/by/4.0

	Introduction
	Initial boundary value problem
	A priori estimates
	Energy estimates
	Elliptic type estimates 

	Well-posedness of local smooth solutions
	Conclusions

