Research article Special Issues

Stationary solutions to a hybrid viscous hydrodynamic model with classical boundaries

  • §Past affiliation: Gran Sasso Science Institute (GSSI), via M. Iacobucci 2, L'Aquila, Italy
  • Received: 24 April 2024 Revised: 13 August 2024 Accepted: 26 August 2024 Published: 12 September 2024
  • In this paper we present a quantum-classical hybrid model based on the hydrodynamic equations in steady state form. The approach presented here, which has already been proposed in previous works, consists in considering an intrinsically hybrid version of the Bohm potential, which acts only in the region of the domain where quantum effects play an important role, while it disappears where the quantum contribution is essentially negligible and the operation of the device can be well described by using a classical model. Compared to previous results from the same line of research, here we assume that the device at the boundaries of the domain behaves classically, while quantum effects are localised in the central part of it. This is the case of greatest scientific interest, since, in real devices, quantum effects are generally localized in a small area within the device itself. The well posedness of the problem is ensured by adding a viscous term necessary for the convergence of the hybrid limit to an appropriate weak solution. Some numerical tests are also performed for different values of the viscous coefficient, in order to evaluate the effects of the viscosity, especially on the boundaries of the device.

    Citation: Federica Di Michele, Bruno Rubino, Rosella Sampalmieri, Kateryna Stiepanova. Stationary solutions to a hybrid viscous hydrodynamic model with classical boundaries[J]. Mathematics in Engineering, 2024, 6(5): 705-725. doi: 10.3934/mine.2024027

    Related Papers:

  • In this paper we present a quantum-classical hybrid model based on the hydrodynamic equations in steady state form. The approach presented here, which has already been proposed in previous works, consists in considering an intrinsically hybrid version of the Bohm potential, which acts only in the region of the domain where quantum effects play an important role, while it disappears where the quantum contribution is essentially negligible and the operation of the device can be well described by using a classical model. Compared to previous results from the same line of research, here we assume that the device at the boundaries of the domain behaves classically, while quantum effects are localised in the central part of it. This is the case of greatest scientific interest, since, in real devices, quantum effects are generally localized in a small area within the device itself. The well posedness of the problem is ensured by adding a viscous term necessary for the convergence of the hybrid limit to an appropriate weak solution. Some numerical tests are also performed for different values of the viscous coefficient, in order to evaluate the effects of the viscosity, especially on the boundaries of the device.



    加载中


    [1] M. G. Ancona, G. J. Iafrate, Quantum correction to the equation of state of an electron gas in a semiconductor, Phys. Rev. B, 39 (1989), 9536–9540. https://doi.org/10.1103/physrevb.39.9536 doi: 10.1103/physrevb.39.9536
    [2] P. Antonelli, P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499–527. https://doi.org/10.1007/s00205-011-0454-7 doi: 10.1007/s00205-011-0454-7
    [3] N. Ben Abdallah, C. Jourdana, P. Pietra, N. Vauchelet, A hybrid classical-quantum approach for ultra-scaled confined nanostructures: modeling and simulation, ESAIM: Proc., 35 (2012), 239–244. https://doi.org/10.1051/proc/201235021 doi: 10.1051/proc/201235021
    [4] N. Ben Abdallah, A hybrid kinetic-quantum model for stationary electron transport, J. Stat. Phys., 90 (1998), 627–662. https://doi.org/10.1023/a:1023216701688 doi: 10.1023/a:1023216701688
    [5] N. Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quantized particles: existence, uniqueness and long time behaviour, Proc. Edinb. Math. Soc., 49 (2006), 513–549. https://doi.org/10.1017/S0013091504000987 doi: 10.1017/S0013091504000987
    [6] G. Bader, U. Ascher, A new basis implementation for a mixed order boundary value ODE solver, SIAM J. Sci. Stat. Comput., 8 (1987), 483–500. https://doi.org/10.1137/0908047 doi: 10.1137/0908047
    [7] M. Baro, N. Ben Abdallah, P. Degond, A. El Ayyadi, A 1D coupled Schrödinger drift-diffusion model including collisions, J. Comput. Phys., 203 (2005), 129–153. https://doi.org/10.1016/j.jcp.2004.08.009 doi: 10.1016/j.jcp.2004.08.009
    [8] F. Brezzi, I. Gasser, P. A. Markowich, C. Schmeiser, Thermal equilibrium states of the quantum hydrodynamic model for semiconductors in one dimension, Appl. Math. Lett., 8 (1995), 47–52. https://doi.org/10.1016/0893-9659(94)00109-p doi: 10.1016/0893-9659(94)00109-p
    [9] S. Chiarelli, F. Di Michele, B. Rubino, A hybrid drift diffusion model: derivation, weak steady state solutions and simulations, Math. Appl., 1 (2012), 37–55. https://doi.org/10.13164/ma.2012.03 doi: 10.13164/ma.2012.03
    [10] P. Degond, P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25–29. https://doi.org/10.1016/0893-9659(90)90130-4 doi: 10.1016/0893-9659(90)90130-4
    [11] F. Di Michele, P. Marcati, B. Rubino, Steady states and interface transmission conditions for heterogeneous quantum classical 1-d hydrodynamic model of semiconductor devices, Phys. D, 243 (2013), 1–13. https://doi.org/10.1016/j.physd.2012.08.012 doi: 10.1016/j.physd.2012.08.012
    [12] F. Di Michele, P. Marcati, B. Rubino, Stationary solution for transient quantum hydrodynamics with bohmenian-type boundary conditions, Comp. Appl. Math., 36 (2017), 459–479. https://doi.org/10.1007/s40314-015-0235-2 doi: 10.1007/s40314-015-0235-2
    [13] F. Di Michele, M. Mei, B. Rubino, R. Sampalmieri, Stationary solution to hybrid quantum hydrodynamical model of semiconductors in bounded domain, Int. J. Numer. Anal. Mod., 13 (2016), 898–925.
    [14] F. Di Michele, M. Mei, B. Rubino, R. Sampalmieri, Thermal equilibrium solution to new model of bipolar hybrid quantum hydrodynamics, J. Differ. Equations, 263 (2017), 1843–1873. https://doi.org/10.1016/j.jde.2017.03.032 doi: 10.1016/j.jde.2017.03.032
    [15] F. Di Michele, M. Mei, B. Rubino, R. Sampalmieri, Stationary solutions for a new hybrid quantum model for semiconductors with discontinuous pressure functional and relaxation time, Math. Mech. Solids, 24 (2018), 2096–2115. https://doi.org/10.1177/1081286518814289 doi: 10.1177/1081286518814289
    [16] F. Di Michele, M. Mei, B. Rubino, R. Sampalmieri, Existence and uniqueness for a stationary hybrid quantum hydrodynamical model with general pressure functional, Commun. Math. Sci., 19 (2021), 2049–2079. https://doi.org/10.4310/cms.2021.v19.n8.a1 doi: 10.4310/cms.2021.v19.n8.a1
    [17] F. Di Michele, M. Mei, B. Rubino, R. Sampalmieri, A steady-state mathematical model for an EOS capacitor: the effect of the size exclusion, Netw. Heteroge. Media, 11 (2016), 603–625. https://doi.org/10.3934/nhm.2016011 doi: 10.3934/nhm.2016011
    [18] F. Di Michele, B. Rubino, R. Sampalmieri, Existence of solutions for a viscous hybrid quantum system for arbitrary large current density, Math. Mech. Solids, 27 (2022), 2189–2200. https://doi.org/10.1177/10812865221105812 doi: 10.1177/10812865221105812
    [19] I. M. Gamba, A. Jüngel, Positive solutions to singular second and third order differential equations for quantum fluids, Arch. Rational Mech. Anal., 156 (2001), 183–203. https://doi.org/10.1007/s002050000114 doi: 10.1007/s002050000114
    [20] C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409–427. https://doi.org/10.1137/s0036139992240425 doi: 10.1137/s0036139992240425
    [21] Y. Guo, W. Strauss, Stability of semiconductor states with insulating and contact boundary conditions, Arch. Rational Mech. Anal., 179 (2006), 1–30. https://doi.org/10.1007/s00205-005-0369-2 doi: 10.1007/s00205-005-0369-2
    [22] M. T. Gyi, A. Jüngel, A quantum regularization of the one-dimensional hydrodynamic model for semiconductors, Adv. Differ. Equ., 5 (2000), 773–800. https://doi.org/10.57262/ade/1356651347 doi: 10.57262/ade/1356651347
    [23] F. Huang, M. Mei, Y. Wang, H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43 (2011), 411–429. https://doi.org/10.1137/100793025 doi: 10.1137/100793025
    [24] F. Huang, M. Mei, Y. Wang, H. Yu, Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors, J. Differ. Equations, 251 (2011), 1305–1331. https://doi.org/10.1016/j.jde.2011.04.007 doi: 10.1016/j.jde.2011.04.007
    [25] C. Jourdana, P. Pietra, A hybrid classical-quantum transport model for the simulation of carbon nanotube transistors, SIAM J. Sci. Comput., 36 (2014), B486–B507. https://doi.org/10.1137/130926353 doi: 10.1137/130926353
    [26] A. Jüngel, H. Li, Quantum Euler-Poisson systems: existence of stationary states, Arch. Math. (Brno), 40 (2004), 435–456.
    [27] A. Jüngel, H. Li, Quantum Euler-Poisson systems: global existence and exponential decay, Quart. Appl. Math., 62 (2004), 569–600. https://doi.org/10.1090/qam/2086047 doi: 10.1090/qam/2086047
    [28] H. Li, P. Markowich, M. Mei, Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors, Proc. R. Soc. Edinburgh, 132 (2002), 359–378. https://doi.org/10.1017/s0308210500001670 doi: 10.1017/s0308210500001670
    [29] P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129–145. https://doi.org/10.1007/bf00379918 doi: 10.1007/bf00379918
    [30] P. Natalini, T. Luo, Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810–830. https://doi.org/10.1137/s0036139996312168 doi: 10.1137/s0036139996312168
    [31] S. Nishibata, M. Suzuki, Initial boundary value problems for a quantum hydrodynamic model of semiconductors: asymptotic behaviors and classical limits, J. Differ. Equations, 244 (2008), 836–874. https://doi.org/10.1016/j.jde.2007.10.035 doi: 10.1016/j.jde.2007.10.035
    [32] O. Salas, P. Lanucara, P. Pietra, S. Rovida, G. Sacchi, Parallelization of a quantum-classic hybrid model for Nanoscale Semiconductor devices, Rev. Mat., 18 (2011), 231–248. https://doi.org/10.15517/rmta.v18i2.2096 doi: 10.15517/rmta.v18i2.2096
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(901) PDF downloads(323) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog