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1. Introduction

Many modern semiconductor devices base their operation on quantum phenomena. These effects,
often difficult to describe from a mathematical point of view, are localized only in a specific region
of the device, therefore, it seems reasonable to use a hybrid approach, which involves the use of both
quantum [1, 2, 8, 20, 31] and classical models [10, 21, 23, 24, 28–30]. Several interesting results are
available in the literature, starting from the pioneering work by N. Ben Abdallah [4], where a set of
physically reasonable conditions is prescribed at the interface between classical and quantum domains
to link the Boltzmann equation and the stationary Schrödinger equations. A similar approach has been
employed in [3, 5, 7, 11, 12, 17, 25, 32]. The interface conditions used in these works are somewhat
arbitrary since there are no direct measurements of the physical variables on the surface between
classical and quantum domains. Furthermore, the transition between the classical and the quantum
system does not take place abruptly in a precise section of the device but rather, there is a transition
zone where the system behaves in a semi-classical way. Following this idea, in [9, 13] an alternative
approach was proposed for the first time. A smooth quantum function Q(x) which multiplies the Bohm
potential is introduced and it drives the classical system to become quantum and vice versa. Namely
Q(x) = 0 in the classical part and Q(x) = 1 in the quantum one, but physically reasonable transition
regions, where 0 < Q(x) < 1, are also included. In this way, no artificial interface condition are
required, and the model naturally evolves from the classical to the quantum regimes [14–16, 18].

Unfortunately, the term Q(x) adds some difficulties, especially in the treatment of the boundaries
of the device. In our previous works in this line, to allow the existence of the weak hybrid solution,
we necessarily had to consider boundary conditions in the quantum domain. Indeed, considering only
quantum boundaries is the main limitation of the original model since the boundaries usually act as
Ohmic contacts and they are well described by classical equations. To overcome this problem, here
we introduce a suitable viscous term that regularizes the equations allowing us to consider classical
boundaries. A similar viscosity has been employed by [19] to prove the existence of a solution to the
quantum hydrodynamic model (QHD) for any positive values of the current density J.

In more detail, the aim of this paper is to study the existence of steady-state weak solutions to the
following visco-hybrid quantum hydrodynamical equation (VH-QHD):2ε2

(
Q

(
√

n)xx
√

n
+ Q′

(
√

n)x
√

n

)
x

−

(
T ln n +

J2

2n2

)
x

+ Vx=
J
τn

+ ν(
√

n)xx,

J = constant,
(1.1)

for x ∈ Ω = [0, 1] and t ≥ 0.
In the system above n is a strictly positive function modelling the electron density, Q :Ω→ [0, 1] is

a regular function as introduced in [9, 13]. In more detail the function Q(x) is such that Q = 0 in the
(classical) outer part of the device and Q > 0 in the central part, where the quantum effect normally
occurs.

The system (1.1) must be coupled with another equation, named the Poisson equation, which
describes the behavior of the self-consistent electrical potential V:

λ2Vxx = n −C. (1.2)
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In (1.1) and (1.2) several positive scaled constants appear: τ, λ, ν, and T ; they represent the relaxation
time, the Debye length, the viscosity coefficient, and the temperature, respectively. Finally 0 < ε << 1
is the scaled Plank’s constant. The function C(x) assigns the distribution of the fixed charge background
of ions, that is the doping profile. Here we assume that C is non-negative and in C0(Ω).

The following boundary conditions for the stationary problem (1.1)-(1.2) are quite standard and
have been already employed in many papers such as [13, 16, 22]; we have

contact boundary : n(0) = n(1) = 1, (1.3)

insulation boundary : nx(0) = nx(1) = 0, (1.4)

and

electric potential condition : V(0) = V0, J = J0 (1.5)

where

V0 = −2ε2Q(0)(
√

n)xx(0) +
J2

2
. (1.6)

Integrating (1.1)1, from (1.5) and (1.6), it follows that

V(x) = −2ε2Q
(
√

n)xx
√

n
− 2ε2Q′

(
√

n)x
√

n
+

J2

2n2 + T ln n −
J
τ

∫ x

0

1
n

dx + ν(
√

n)x, (1.7)

and, in view of the above boundary conditions (1.3)–(1.5), we have

V(1) = −2ε2Q(1)(
√

n)xx(1) +
J2

2
−

J
τ

∫ 1

0

1
n

dx. (1.8)

We just point out that in the BVP above the condition J = J0 replaces one of the two boundary
conditions on the electric potential V , which are necessary to solve the Poisson equation. The
equivalence between the two conditions is proved in [22].

The subject of this paper is therefore the following boundary problem associated with the steady-
state VH-QHD model (1.1)-(1.2):

2ε2
(

Q(
√

n)xx
√

n
+

Q′(
√

n)x
√

n

)
x

−

(
T ln n +

J2

2n2

)
x

+ Vx =
J
τn

+ ν(
√

n)xx,

λ2Vxx = n −C,

n(0) = n(1) = 1, nx(0) = nx(1) = 0, V(0) = V0, J = J0.

(1.9)

Here is the outline of the paper: In Section 2, in order to simplify the reading of the article, we
state the main theorems that will be proved in the following sections. In Section 3 we study the
approximating problem obtained from (1.9) assuming Q(x) ≥ q > 0, for a given positive constant
q. Then, in Section 4, the limit q → 0 is considered. Finally, in Section 5, some simple numerical
experiments are performed to analyze the effect of the viscosity on the classical boundaries.
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2. Main results

The main results of the paper will be presented in this section. We are looking for a solution to the
visco-hybrid QHD (1.9) assuming with Q = 0 close to the boundaries and Q > 0 in the central part of
the domain.

We remark that both the quantum function and the doping profile are assumed to be continuous
functions.

We focus on the following fourth-order boundary value problem (BVP)
2ε2

(
Q

(
√

n)xx
√

n
+ Q′

(
√

n)x
√

n

)
xx

−

((T
n
−

J2

n3

)
nx

)
x

+
1
λ2 (n −C) = −

J
τn2 nx + ν(

√
n)xxx,

λ2Vxx = n −C,

n(0) = n(1) = 1, nx(0) = nx(1) = 0, V(0) = V0, J = J0,

(2.1)

obtained differentiating (1.9)1 in view of the Poisson equation (1.2).
In order to prove the existence of the solution to the system above we need to assume that the flow

is subsonic, since this condition guarantees the uniform ellipticity of the problem, that is

velocity of the flow :=
|J|
n
<

√
p′(n) =

√
T =: sound speed, (2.2)

and then

n >
|J0|
√

T
=: n?. (2.3)

Remark 2.1. Similarly, on the boundary of the domain and for the doping profile C(x), we must have

n(0) = n(1) = 1 >
|J0|
√

T
, (2.4)

C0 := min
x∈[0,1]

C(x) > n? =
|J0|
√

T
. (2.5)

The 3rd order elliptic equation (2.1) is degenerate close to the boundaries where the quantum effects
disappear. To overcome this technical difficulty we prove the existence of solutions for a regularized
problem obtained assuming Q = Qq in (2.1), where 0 < q ≤ Qq ≤ 1. As a consequence, we obtain a
sequence of smooth functions {Qq}, q ∈ R+, and require that this sequence satisfies the following set
of conditions: 

Qq → Q, Q′q → Q′ uniformly in Ω, for q→ 0,
‖Q′q‖L2 ≤ K̄, uniformly in q,

ε2|Q′q|
2 < Qq

(
T −

J2

n2

)
for all x ∈ [0, 1] and for all q ∈ R+,

(2.6)

where n := min{1,C0} > n? and n? as in (2.3). Now we consider the following modified visco-hybrid
QHD equations (VH-QqHD) where we set wq =

√nq and replace Q(x) by Qq(x). We will look for
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(wq,Vq)(x), as solutions to the following VH-QqHD system:
2ε2

(
Qq

(wq)xx

wq
+ Q′q

(wq)x

wq

)
xx

− 2
((

T −
J2

w4
q

) (wq)x

wq

)
x

+
1
λ2 (w2

q −C) = −
2J
τw3

q
(wq)x + ν (wq)xxx,

λ2(Vq)xx = w2
q −C,

wq(0) = wq(1) = 1, (wq)x(0) = (wq)x(1) = 0, Vq(0) = V0, J = J0.

(2.7)

As in [13], we start by proving the following theorem to asses the existence of solutions to (2.7).

Theorem 2.2 (Existence of VH-QqHD solution). Assume (2.4) and (2.5) are fulfilled, that Qq(x) is a
non-negative, bounded smooth function on Ω = [0, 1] such that

0 < q ≤ Qq ≤ 1, α := max(‖Q′q‖∞, ‖Q
′′
q ‖∞) < ∞ for all x ∈ Ω, (2.8)

and

ε2 max
x∈Ω

|Q′q|
2

Qq
< 4

(
T −

J2
0

n2

)
, (2.9)

where n := min{1,C0}. Then there exists at least one solution to (2.7) such that (wq,Vq) ∈ H4(Ω) ×
H2(Ω).

Remark 2.3. Condition (2.6)3 essentially means that |Q′q|
2/Qq remains bounded when Qq → 0. We

observe that this condition is verified when Qq behaves as |x − x0|
m, for m ≥ 2, when x → x0. Finally,

we notice that the assumption (2.6)3 is stronger than (2.9), required in the first part of the paper for
q > 0.

To better assess the existence of the solution to a more realistic visco-hybrid QHD model, namely
where Q = 0 on the classical part of the domain, we need to define what solution means in this contest.
In this case, we do not expect a classical solution to exist and we look just for a weak solution defined
as follows:

Definition 2.4. The couple (w,V)(x) is a weak solution of (2.1) (where w =
√

n), if, for any φ ∈ C∞0 (Ω)
the following relations are verified

2ε2
∫ 1

0

(
Q

wxx

w
+ Q′

wx

w

)
φxxdx + 2

∫ 1

0

((
T −

J2

w4

)wx

w

)
φxdx (2.10)

+

∫ 1

0

1
λ2 (w2 −C)φdx +

∫ 1

0

J
τw2φxdx + ν

∫ 1

0
wxφxxdx = 0,

and ∫ 1

0
Vφ dx = −2ε2

∫ 1

0
Q

wxx

w
φ dx − 2ε2

∫ 1

0
Q′

wx

w
φ dx (2.11)

+

∫ 1

0

J2

2w4φ dx + 2T
∫ 1

0
(ln w)φ dx −

J
τ

∫ 1

0

( ∫ x

0

1
w2(s)

ds
)
φ dx + ν

∫ 1

0
wxφ dx.
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Since the limit problem behaves classically close to the boundaries, when we perform the hybrid
limit we pass from the quantum to the classical regime then the quantum term disappears. Therefore
we need to assume that (

Qq
(wq)xx

wq
+ Q′q

(wq)x

wq

)
x

→ 0 in L2 as q→ 0, (2.12)

in a neighborhood of the boundaries x = 0 and x = 1.
The main result of this paper is the following theorem:

Theorem 2.5 (Hybrid limits and existence of VH-QHD solution). Assume (2.4), (2.5) and Q ∈ C1[0, 1]
with 0 ≤ Q ≤ 1 and C ∈ C0[0, 1]. Let {Qq} be a sequence satisfying (2.6), (2.12) and (wq,Vq)(x) be
a solution to (2.7) corresponding to the approximating function Qq. Then there exists a convergent
subsequence of (wq,Vq)(x), which is not relabelled, with limit (w,V), namely

wq ⇀ w in H1(Ω),
wq → w in C0(Ω),
Vq ⇀ V in L2(Ω),

as q→ 0. (2.13)

Such a pair (w,V)(x) is the weak solution to the VH-QHD system (2.1), where w =
√

n.

3. Existence of a solution to the VH-QqHD problem

In this section, we prove that, under a suitable set of conditions, the BVP (2.7) admits a weak
solution (wq,Vq). For this purpose, we rewrite (2.7) in the following equivalent form

2ε2
(
Qq

(wq)xx

wq
+ Q′q

(wq)x

wq

)
xx

− 2T (ln wq)xx −

(
J2

2w4
q

)
xx

= −
w2

q −C

λ2 +

(
J
τw2

q

)
x

+ ν (wq)xxx, (3.1)

(wq)x(0) = (wq)x(1) = 0, wq(0) = wq(1) = 1, J = J0. (3.2)

In the next result we prove a set of useful a priori estimates, which allow to properly construct the
fixed point theorem which guarantees the existence result for (3.1)-(3.2).

Lemma 3.1 (A priori estimates). Assume the subsonic conditions (2.4), (2.5) and Qq such that (2.8)
and (2.9) are both satisfied. Let wq ∈ H2(Ω) be a solution of the BVP (3.1)-(3.2). Then wq verifies the
following properties:

• Adjoint subsonic condition

wq(x) ≥
√

n >
√

n? for x ∈ [0, 1]. (3.3)

• L∞ bound

‖wq‖L∞(Ω) ≤ wM. (3.4)
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• H2 bound

ε2c1

∫ 1

0
(wq)2

xx dx + c2

∫ 1

0
(wq)2

x dx ≤ K, (3.5)

where wM ≥
√n, c1 > 0, c2 > 0, and K > 0 are constants with c2 independent of q.

Proof. Let

2ε2
∫ 1

0
Qq

(wq)2
xx

wq
dx + 2

∫ 1

0

(
T −

J2

w4
q

)
(wq)2

x

wq
dx + 2ε2

∫ 1

0
Q′q

(wq)x(wq)xx

wq
dx

= −
1
λ2

∫ 1

0
(w2

q − 1)(wq − 1) dx +
1
λ2

∫ 1

0
(C − 1)(wq − 1) dx

−

∫ 1

0

J
τw2

q
(wq)x dx + ν

∫ 1

0
(wq − 1)(wq)xxx dx

=: I1 + I2 + I3 + I4,

obtained multiplying (3.1) by (wq − 1) ∈ H1
0(Ω), and integrating by parts. The integrals I1 and I2 can

be estimated as follows:

I1 + I2 ≤ −
1
λ2

∫ 1

0
(wq − 1)2(wq + 1) dx +

1
2λ2

∫ 1

0
(C − 1)2 dx +

1
2λ2

∫ 1

0
(wq − 1)2 dx

≤ −
1
λ2

∫ 1

0
(wq − 1)2

(
wq +

1
2

)
dx +

1
2λ2

∫ 1

0
(C − 1)2 dx.

Moreover, both I3 and I4 are equal to zero, indeed

I3 =

∫ 1

0

J
τw2

q
(wq)xdx = −

J
τwq

∣∣∣∣x=1

x=0
= 0, (3.6)

I4 = −ν

∫ 1

0
(wq)x(wq)xxdx =

1
2

(wq)2
x

∣∣∣∣x=1

x=0
= 0. (3.7)

In view of the estimate above, we get

2ε2
∫ 1

0
Qq

(wq)2
xx

wq
dx + 2ε2

∫ 1

0
Q′q

(wq)x(wq)xx

wq
dx (3.8)

+ 2
∫ 1

0

(
T −

J2

w4
q

)
(wq)2

x

wq
dx +

1
λ2

∫ 1

0
(wq − 1)2

(
wq +

1
2

)
dx

≤
1

2λ2

∫ 1

0
(C − 1)2 dx.

Observing (3.8), we can see that the first three terms on the left side can be read as a quadratic form,
namely
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∫ 1

0

[
2ε2Qq

(wq)2
xx

wq
+ 2ε2Q′q

(wq)x(wq)xx

wq
+ 2

(
T −

J2

w4
q

) (wq)2
x

wq

]
dx (3.9)

=:
∫ 1

0
(A1

(wq)2
xx

wq
+ B1

(wq)x(wq)xx

wq
+ C1

(wq)2
x

wq
)dx

≥ c1

∫ 1

0

(wq)2
xx

wq
dx + c2

∫ 1

0

(wq)2
x

wq
dx,

where c1 and c2 are positive constants. We notice that (3.9) is positive definite if and only if B2
1 −

4A1C1 < 0. From (2.9), we get

B2
1 − 4A1C1 = 4ε2

[
ε2|Q′q|

2 − 4Qq

(
T −

J2

w4
q

) ]
< 4ε2

[
ε2|Q′q|

2 − 4Qq

(
T −

J2

n2

) ]
< 0, for wq ≥

√
n,

that is always true, at least for a small (positive) values of ε.
Then, in view of (3.9) and (3.8), we get

c1

∫ 1

0

(wq)2
xx

wq
dx + c2

∫ 1

0

(wq)2
x

wq
dx ≤

1
2λ2

∫ 1

0
(C − 1)2dx =: K0, (3.10)

which implies
‖
√

wq − 1‖∞ ≤ K1,

observing that
(wq)2

x

wq
= 4[(

√
wq)x]2 and taking K1 =

√
K0

c2
. The L∞ bound (3.4) follows by setting

wM = (1 + K1)2, while the H2-bound (3.5) can be easily derived from (3.10), in view of (3.4).
Last step is to show that wq ≥

√
n for all x ∈ Ω and n = min{1,C0}.

Let (wq −
√n)− := min(0,wq −

√n) used as a test function in the weak formulation of the
problem (3.1) as follows

2ε2
∫ 1

0
Qq

((wq −
√n)−)2

xx

wq
dx + 2

∫ 1

0

(
T −

J2

w4
q

) ((wq −
√n)−)2

x

wq
dx

+ 2ε2
∫ 1

0
Q′q

((wq −
√n)−)x((wq −

√n)−)xx

wq
dx

= −
1
λ2

∫ 1

0
(w2

q −
√

n2)(wq −
√

n)− dx +
1
λ2

∫ 1

0
(C − n)(wq −

√
n)− dx

−

∫ 1

0

J
τw2

q
((wq −

√
n)−)x dx + ν

∫ 1

0
(wq −

√
n)−(wq)xxx dx =: L1 + L2 + L3 + L4.

We recall that wq|∂Ω = 1 > √n, so (wq −
√n)−|∂Ω = 0, and (wq −

√n)− ∈ H1
0(Ω). Concerning the first

two terms on the right-hand side of the previous equation, one has

L1 + L2 ≤ −
1
λ2

∫ 1

0
((wq −

√
n)−)2(wq +

√
n) dx +

1
λ2

∫ 1

0
(C − n)(wq −

√
n)− dx.
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In order to estimate the L3 term, we observe that the interval Ω can be seen as a disjoint union of the
sub-intervals Ω+ = ∪iΩi

+, Ω− = ∪iΩi
− plus isolated points, where

Ωi
+ = {x ∈ Ω such that wq ≥

√
n}, and Ω j

− = {x ∈ Ω such that wq <
√

n}.

Therefore, L3 can be rewritten as

L3 = −

∫ 1

0

J
τw2

q
((wq −

√
n)−)x dx

= −
∑

i

∫
Ωi

+

J
τw2

q
((wq −

√
n)−)x dx −

∑
j

∫
Ω j
−

J
τw2

q
((wq −

√
n)−)x dx

and then

L3 = −
∑

j

∫
Ω j
−

J
τw2

q
((wq −

√
n)−)x dx.

The integral L3 must be computed on each interval Ω j
−. We just consider a single interval Ω j

− = (a j, b j)
contained in the open set (0, 1) (the result can easily be generalized to a greater number of intervals),
obtaining

L3 = −

∫ b j

a j

J
τw2

q
(wq)x dx =

J
τwq(b j)

−
J

τwq(a j)
= 0. (3.11)

Here we have used (3.5) to show that wq is a continuous function in [a j, b j] and wq(a j) = wq(b j) =
√n.

Finally, we prove that also L4 = 0, indeed

L4 = −ν

∫ 1

0
(wq −

√
n)−x (wq −

√
n)−xx dx = −

1
2
ν ((wq −

√
n)−)2

x

∣∣∣∣1
0

= 0. (3.12)

In view of (2.9), (3.11), and (3.12), arguing as for (3.9), one can find two non negative constants named
c1, c2 and c3 such that

c1

∫ 1

0
((wq −

√
n)−)2

xx dx + c2

∫ 1

0
((wq −

√
n)−)2

x dx

+ c3

∫ 1

0
((wq −

√
n)−)2(wq +

√
n) dx ≤

1
λ2

∫ 1

0
(C − n)(wq −

√
n)− dx,

therefore (wq −
√n)− = 0 and then (3.3). �

Lemma 3.2. Set uq = ln nq and assume that the hypotheses of Lemma 3.1 hold, then

ε
√

q‖(uq)xx‖L2(Ω) +

√
T − J2/n2 ‖(uq)x‖L2(Ω)

≤ ε‖
√

Qq(uq)xx‖L2(Ω) +

√
T − J2/n2 ‖(uq)x‖L2(Ω) ≤ K0. (3.13)
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Proof. We consider the following equation

ε2
(
Qq

(
(uq)xx +

(uq)2
x

2

)
+ Q′q(uq)x

)
xx

+ (J2e−2uq(uq)x)x (3.14)

− T (uq)xx +
euq −C(x)

λ2 −

( J
τ

e−uq

)
x

+ ν (e
uq
2 )xxx = 0,

obtained from (2.7) setting wq = euq/2 and deriving with respect to x.
Clearly

uq(0) = uq(1) = 0, (uq)x(0) = (uq)x(1) = 0. (3.15)

Let’s multiply (3.14) by uq and integrate by parts. In view of the boundary conditions (3.15), we get

ε2
∫ 1

0
Qq(uq)2

xx dx +

∫ 1

0

(
T −

J2

e2uq

)
(uq)2

x dx

= −
1
λ2

∫ 1

0
(euq −C)uq dx

+
J
τ

∫ 1

0
e−uq(uq)x dx + ε2

∫ 1

0
Q′q

(uq)3
x

6
dx − ε2

∫ 1

0
Q′′q (x)

(uq)2
x

2
dx

− ν

∫ 1

0
(e

uq
2 )xx(uq)x dx

=: N1 + N2 + N3 + N4 + N5.

According to the results in [22], we get

N1 ≤
1
λ2 (e−1 + ‖C ln C‖L∞).

Moreover N2 = 0, in view of the boundary conditions, and

N3 + N4 ≤
ε2

6
‖Q′q‖∞‖(uq)x‖

3
∞ +

ε2

2
‖Q′′q ‖∞‖(uq)x‖

2
∞

≤
αε2

2
‖(uq)x‖

2
∞

(
‖(uq)x‖∞

3
+ 1

)
.

Concerning N5, we have

N5 =ν

∫ 1

0

(
e

uq
2
)

x(uq)xx dx

=ν

∫ 1

0
e

uq
2

(uq)x

2
(uq)xx dx

=
1
8
ν

∫ 1

0
e

uq
2 (uq)3

x dx

≤ ν
1
4

e
wM

2 ‖(uq)x‖
3
∞. (3.16)
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Finally, in view of the estimation above, we obtain the following inequality

ε2q
∫ 1

0
(uq)2

xx dx +

(
T −

J2

n2

) ∫ 1

0
(uq)2

x dx (3.17)

≤ ε‖
√

Qq(uq)xx‖L2(Ω) +

√
T − J2/n2 ‖(uq)x‖L2(Ω)

≤ K0

which implies (3.13). �

Theorem 3.3. Assume that the hypotheses of Lemma 3.1 and (2.2) hold. Then, the boundary value
problem (3.14)-(3.15) admits at least one weak solution uq ∈ H2(Ω).

Proof. As already noted in [13], Eq (3.14) is equivalent to the standard QHD model because Qq ≥ q >
0. Therefore, we can employ the same techniques applied in [22, 26, 27].

For σ ∈ [0, 1] and ρ ∈ X = C0,1(Ω), we introduce the equation

ε2
(
Qq

(
(uq)xx +

σ

2
(ρ)2

x

)
+ Q′q(uq)x

)
xx

+ σJ2
(
e−2ρρx

)
x

(3.18)

− T (uq)xx +
σ

λ2

(
eρ − 1
ρ

uq + 1 −C
)
− σ

J
τ

(e−ρ)x − σν (e
ρ
2 )xxx = 0

and coupled it to (3.15). It is not difficult to see that for each uq, φ ∈ H2(Ω) the following bi-linear form

a(uq, φ) =

∫ 1

0

(
ε2

(
Qq(uq)xx + Q′q(uq)x

)
φxx + T (uq)xφx +

σ

λ2

eρ − 1
ρ

uqφ

)
dx

is continuous and coercive in H2(Ω).
Moreover a linear and continuous functional can be defined as follows:

F(φ) =

∫ 1

0

(
−Qq

ε2σ

2
ρ2

xφxx + σJ2e−2ρρxφx +
σ

λ2 (C − 1)φ
)

dx

−

∫ 1

0

(
σ

J
τ

e−ρφx

)
dx −

∫ 1

0

(
1
2
σν e

ρ
2ρxφxx

)
dx.

Then the Lax-Milgram Lemma guarantees the existence of a unique solution uq ∈ H2(Ω) to the
boundary value problem (3.15)–(3.18). Then a continuous and compact map S on the functional space
X can be defined as

S : X × [0, 1]→ X, (ρ, σ)→ uq (3.19)

such that

• S (ρ, 0) = 0 for all ρ ∈ X,
• there is a constant c > 0 such that

‖uq‖X ≤ c, for all (uq, σ) ∈ X × [0, 1] satisfying S (uq, σ) = uq. (3.20)
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Applying the Leray-Schauder fixed point theorem we can prove that uq is a fixed point for the map S
and also a weak solution to the BVP (3.14)-(3.15). �

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We consider Eq (3.14)

ε2
(
Qq

(
(uq)xx +

(uq)2
x

2

)
+ Q′q(uq)x

)
xx

+ (J2e−2uq(uq)x)x

− T (uq)xx +
euq −C(x)

λ2 −

( J
τ

e−uq

)
x

+ ν (e
uq
2 )xxx = 0,

from which we have

ε2Qq(uq)xxxx = − ε2(Qq
(uq)2

x

2
)

xx − ε
2(Q′q(uq)xxx + Q′′q (uq)x

)
+ (J2e−2uq(uq)x)x

− T (uq)xx +
euq −C(x)

λ2 −

( J
τ

e−uq

)
x

+ ν (e
uq
2 )xxx.

Observing that uq ∈ H2(Ω), by Theorem 3.3, and arguing as in Corollary 2.6 in [22], it is not difficult
to prove that (uq

2
x)xx ∈ H−1(Ω). Concerning the viscous term (e

uq
2 )xxx we have

(euq/2)xxx =
euq/2

2

(
uqxxx + uqxuqxx + uq

3
x/4

)
.

It is easy to see that uqxuqxx and uq
3
x both belongs to L2(Ω) and uqxxx ∈ H−1(Ω). Proceeding as in [22]

and taking into account the regularity of Qq > q > 0, we can deduce that (uq)xxxx and then (wq)xxxx are
in L2(Ω). Since problem (2.7) is equivalent to (3.14)-(3.15), the existence of a solution wq ∈ H4 follows
easily. Finally, from the Poisson equation, we deduce Vq ∈ H2 and that concludes the proof. �

4. Hybrid limit

In this section we perform the hybrid limit for Eq (2.7), assuming q→ 0. Unlike the previous works
of the authors in this line [13, 15–17], in this paper we consider the quantum effects localized in the
central part of the device, where Q > 0, which is more correct from the physical point of view. On the
boundaries of the device we set Q = 0, assuming classical behaviour.

Now we present the proof of the main result of the paper.

Proof of Theorem 2.5. Let 0 < δ∗ < δ∗∗ < 1. Define the function Q as follows:

Q(x)

= 0 if 0,≤ x ≤ δ∗ and δ∗∗ ≤ x ≤ 1,
> 0, if δ∗ < x < δ∗∗,

(4.1)

and Ωc := [0, δ∗] ∪ [δ∗∗, 1].
Once the function Q has been chosen as in (4.1), we construct the sequence of the approximating

functions {Qq} to Q, satisfying (2.6). Let (wq,Vq)(x) be the solutions to (2.7) corresponding to Qq. In
the sequel, we will denote constants independent from q as K̄ or c̄i.
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We recall that from (3.4) and (3.5) the following q-independent estimate holds:

‖wq‖H1(Ω) ≤ K̄ (4.2)

and we briefly prove also the following:

‖
√

Qqwqxx‖L2(Ω) ≤ K̄. (4.3)

Proceeding as in Lemma 3.1, we rearrange the first three terms of the left-hand side in (3.8) as

2
∫ 1

0

[ε2Qq

wq
wq

2
xx +

2ε2Q′q
wq

wqxwqxx +
( T
wq
−

J2

wq
5

)
wq

2
x

]
dx

+

∫ 1

0

[ε2Qq

wq
wq

2
xx +

( T
wq
−

J2

wq
5

)
wq

2
x

]
dx

=:
∫ 1

0
(A2wq

2
xx + B2wqxwqxx + C2wq

2
x)dx +

∫ 1

0

[ε2Qq

wq
wq

2
xx +

( T
wq
−

J2

wq
5

)
wq

2
x

]
dx.

The first term on the right-hand side is positive by (2.6), since B2
2 − 4A2C2 < 0, where

B2
2 − 4A2C2 =

4
w2

q

[
|ε2Q′q|

2 − 4ε2Qq

(
T −

J2

w4
q

) ]
<

4ε2

w2
q

[
ε2|Q′q|

2 − 4Qq

(
T −

J2

n2

) ]
< 0, for n ≥ n.

As in the proof of Lemma 3.1, we obtain∫ 1

0

ε2Qq

wq
wq

2
xxdx +

∫ 1

0

( T
wq
−

J2

wq
5

)
wq

2
x dx ≤ K̄. (4.4)

By (2.9), we have T
wq
− J2

wq5 > 0 and recalling that wq ≥
√

n∗, we can rewrite (4.4) as

c̄2

∫ 1

0
Qqwq

2
xxdx + c̄3

∫ 1

0
wq

2
x dx ≤ K̄ (4.5)

and then we get (4.3).
Therefore,

√
Qqwqxx is uniformly bounded in L2(Ω) and there exists a w(x) as the hybrid limit of

the sequence wq with

√
Qqwqxx ⇀

√
Qwxx in L2(Ω), for q→ 0, (4.6)

while, from (4.2), we have

wq ⇀ w in H1(Ω), for q→ 0. (4.7)
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Considering the weak form of (2.7)

2ε2
∫ 1

0

(
Qq

wqxx

wq
+ Q′q

wqx

wq

)
φxxdx + 2

∫ 1

0

((
T −

J2

w4
q

)wqx

wq

)
φxdx (4.8)

+

∫ 1

0

1
λ2 (w2

q −C)φdx +

∫ 1

0

J
τw2

q
φxdx + ν

∫ 1

0
wqxφxxdx = 0,

we perform the hybrid limit q→ 0.
We just note that since 0 ≤ √n ≤ wq ≤ wM for every q and wq → w in C0(Ω), for q → 0, we can

write 1
wq
→ 1

w and w2
q → w2 for q→ 0, similarly for the other nonlinear terms.

So we obtain as limit

2ε2
∫ 1

0

(
Q

wxx

w
+ Q′

wx

w

)
φxxdx + 2

∫ 1

0

((
T −

J2

w4

)wx

w

)
φxdx (4.9)

+

∫ 1

0

1
λ2 (w2 −C)φdx +

∫ 1

0

J
τw2φxdx + ν

∫ 1

0
wxφxxdx = 0,

for any φ ∈ C∞0 (Ω).
Then n = w2 satisfies (1.9)1 in the weak sense.
In particular, the weak limit Eq (4.9) in Ωc becomes

2
∫

Ωc

(
(T −

J2

w4 )
wx

w

)
φx dx +

1
λ2

∫
Ωc

(w2 −C)φx dx +

∫
Ωc

2J2

τw3φx dx

+ν

∫
Ωc

wxφxxdx = 0, for all φ ∈ C∞0 (Ω)

thanks to the hypothesis 2.12, in agreement with the previous estimates and (2.6)1.
It follows that the limit solution w satisfies

2
(
(T −

J2

w4 )
wx

w

)
x

+
1
λ2 (w2 −C) +

(
2J2

τw3

)
x

+ νwxxx = 0 (4.10)

in Ωc.

Concerning the electric potential Vq, by integrating (1.1) with respect to x and using (1.3), we obtain

Vq = − 2ε2Qq
wqxx

wq
− 2ε2Q′q

wqx

wq
+

J2

2wq
4 + 2T ln wq −

J
τ

∫ x

0

1
wq

2 dx + νwqxx. (4.11)

The assumption (2.6) and the uniform estimates (4.3) imply that ‖Vq‖L2 ≤ K̄. Therefore, there exists
V such that

Vq ⇀ V in L2(Ω), (4.12)

when q→ 0.
As before, we prove that the limit V is the weak solution of the hybrid problem. To this end, we

multiply (4.11) by φ ∈ C∞0 (Ω) and integrate it in Ω:
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∫ 1

0
Vqφ dx = − 2ε2

∫ 1

0
Qq

wqxx

wq
φ dx − 2ε2

∫ 1

0
Q′q

wqx

wq
φ dx +

∫ 1

0

J2

2wq
4φ dx (4.13)

+ 2T
∫ 1

0
(ln wq)φ dx −

J
τ

∫ 1

0

∫ x

0

1
wq

2 ds φ dx − ν
∫ 1

0
wqxφxxdx.

The uniform estimate in (4.2)-(4.3) and the properties of {Qq} allow that, for q→ 0, we have∫ 1

0
Vφ dx = − 2ε2

∫ 1

0
Q

wxx

w
φ dx − 2ε2

∫ 1

0
Q′

wx

w
φ dx +

∫ 1

0

J2

2w4φ dx (4.14)

+ 2T
∫ 1

0
(ln w)φ dx −

J
τ

∫ 1

0

∫ x

0

1
w2 ds φ dx − ν

∫ 1

0
wxφxxdx.

Thus, the limit potential V verifies the Poisson equation in the weak sense.
In order to conclude the proof, we need to verify the boundary conditions (w)x(0) = (w)x(1) = 0

for the limit solution. To this end, we have to prove that (wq)xx is weakly convergent in L2 on a small
region near each of the two extrema 0 and 1 of Ω. We write Eq (2.7) as follows:

2ε2
(

Qq(wq)xx

wq
+

Q′q(wq)x

wq

)
xx

− ν (wq)xxx = 2
((

T −
J2

w4
q

) (wq)x

wq

)
x

−
(w2

q −C)

λ2 −
2J(wq)x

τw3
q

.

By the previous uniform estimates, we can see that the right-hand side of the above equation is in
H−1(Ω). Then there exists a function f ∈ L2(Ω) such that(

2ε2
(
Qq

(wq)xx

wq
+ Q′q

(wq)x

wq

)
x

− ν (wq)xx − f
)

x

= 0,

which implies that (
2ε2

(
Qq

(wq)xx

wq
+ Q′q

(wq)x

wq

)
x

− ν (wq)xx

)
= f + constant

is in L2(Ω).
Then 2ε2

(
Qq

(wq)xx

wq
+ Q′q

(wq)x

wq

)
x
− ν (wq)xx belongs to L2(Ω) and, in view of the assumption (2.12), we

conclude that, at least in a small region close to the boundaries, the convergence of the sequence wq to
w is weak in H2.

By the inclusion H2(Ωc) ↪→ C1(Ωc), we can conclude that

lim
q→0

(wq)x(0) = 0 = wx(0)

and
lim
q→0

(wq)x(1) = 0 = wx(1).

The proof of Theorem 2.5 is complete. �
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5. Numerical simulations

In the previous sections, we have introduced a new hybrid viscous model (VH-QHD) and we have
discussed how the viscous term ν(

√
n)xx allows the treatment of the classical boundaries making the

problem well-posed.
In this section, we show the regularizing effects of viscosity by means of some numerical

simulations on a simple n+|n|n+ transistor. For this device one usually assumes the following doping
profile as in [13]

C̄(x) =

{
Cm, ∀ x ∈ [x1, x2] ,
1, ∀ x ∈ [0, x1) and x ∈ (x2, 1] ,

(5.1)

with 0 < Cm < 1 and 0 < x1 < x2 < 1. Within this paper the quantum regions is localized in the central
part of the domain whereas the external ones, close to the Ohmic contacts, behave classically.

In this case we have {
Quantum Region ∀ x ∈

[
y1, y2

]
,

Classical Region ∀ x ∈
[
0, y1) and x ∈ (y2, 1

]
,

(5.2)

where 0 < y1 < y2 < 1. To solve numerically the following boundary value problems we use
COLNEW, a SCILAB tool (see [6]). To perform our computations, we consider the hybrid model
in the following form:

ε2
(
Q

(
uxx +

u2
x

2

)
+ Q′ux

)
xx

+ (J2e−2uux)x − Tuxx +
eu −C(x)

λ2 −

( J
τ

e−u
)

x
= ν(e

u
2 )xxx,

coupled with the boundary conditions

u(0) = u(1) = 0, ux(0) = ux(1) = 0,

where, as usual, u = ln n. Both the doping profile C(x) and the quantum function Q(x) have been
approximated by regular functions as follows:

C(x) = 1 − (0.5 −Cm/2)(tanh(1000(x − 1/3)) − tanh(1000(x − 2/3))),

Q(x) = Qcqc(x) = (q − 0.5)(tanh(h(x − (2/3))) − tanh(h(−(x − 1/3))) + q, (5.3)

where x ∈ [0, 1], Cm = 0.2 and q = 0.01.
For sake of completeness we also consider the quantum boundary case, not included in the

theoretical part, but extensively discussed in previous works [14–16]. In this case, the quantum function
can be approximated by

Qqcq(x) = (0.5 − q/2)((tanh(40(x − 2/3)) − tanh(40(x − 1/3))) + 1. (5.4)

The two quantum functions are displayed in Figure 1.
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Figure 1. Quantum function behaviour: Qcqc on the left side and the Qqcq on the right side.

The other parameters, namely the scaled Debye length λ, the scaled temperature T , the scaled Plank
constant ε, the current density J, and the relaxation time τ are assigned as follows:

λ = 0.1, T = 1, ε = 0.01, J = 0.1, τ = 0.125.

To evaluate the effect of the viscosity, we compare the behavior of the charge density assuming ν = 0
and ν = 0.001, for both quantum functions Qcqc (Figures 2 and 3) and Qqcq (Figures 4 and 5). Observing
Figure 2 we can see small oscillations of the charge density close to the boundaries, while this effect
disappears by adding a small viscosity.

In Figure 3 the charge density behavior close to x = 0 is displayed in detail for three different
viscosity values, namely ν = 0, 0.0001, 0.001.

The behavior in the non-viscous case is the same as that obtained for very low viscosity. As the
viscosity increases, the function’s trend near the edges appears more regular. These fluctuations could
be caused by the fact that the problem is not well-posed at the boundaries. However, it is also possible
that these effects are related to the numeric scheme used by COLNEW. To better understand the cause
of these fluctuations it is necessary to design an ad-hoc numerical scheme, which is beyond the aim of
this article. Conversely, using (5.4) as a quantum function, the problem is well-posed on the boundaries
and the behaviour of the charge density appears regular over the entire domain, both in the viscous and
in the non-viscous cases, as in Figure 4.

Figure 2. Charge density assuming Qcqc as quantum functions, for non-viscous (left) and the
viscous problem (right).
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Figure 3. Detail of the charge density behavior close to the boundary x = 0, assuming Qcqc

and different values of the viscosity, namely ν = 0, 0.0001, 0.001.

Figure 4. Charge density assuming Qqcq as quantum functions, for non-viscous (left) and the
viscous problem (right).

Figure 5. Detail of the charge density behaviour close to the boundary x = 0, assuming Qqcq

and different values of the viscosity, namely ν = 0, 00001 and ν = 0.001.
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6. Conclusions

In this paper we discuss the existence of solutions for a hybrid classical-quantum hydrodynamic
problem, assuming quantum effects localized in the central part of the domain. The existence of a weak
solution is obtained as a limit-solution of a fully quantum regularised problem. Numerical simulations
show that the viscous term contributes to limiting spurious oscillations on the boundary. However,
a stationary one-dimensional model like the one discussed here cannot fully describe the complexity
of the phenomenon under analysis. Further studies involving two-dimensional and time-dependent
models are still in progress.
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