Research article Special Issues

SUPG-stabilized stabilization-free VEM: a numerical investigation

  • Received: 29 June 2023 Revised: 27 February 2024 Accepted: 27 February 2024 Published: 01 March 2024
  • We numerically investigate the possibility of defining Stabilization-Free Virtual Element discretizations–i.e., Virtual Element Method discretizations without an additional non-polynomial non-operator-preserving stabilization term–of advection-diffusion problems in the advection-dominated regime, considering a Streamline Upwind Petrov-Galerkin stabilized formulation of the scheme. We present numerical tests that assess the robustness of the proposed scheme and compare it with a standard Virtual Element Method.

    Citation: Andrea Borio, Martina Busetto, Francesca Marcon. SUPG-stabilized stabilization-free VEM: a numerical investigation[J]. Mathematics in Engineering, 2024, 6(1): 173-191. doi: 10.3934/mine.2024008

    Related Papers:

  • We numerically investigate the possibility of defining Stabilization-Free Virtual Element discretizations–i.e., Virtual Element Method discretizations without an additional non-polynomial non-operator-preserving stabilization term–of advection-diffusion problems in the advection-dominated regime, considering a Streamline Upwind Petrov-Galerkin stabilized formulation of the scheme. We present numerical tests that assess the robustness of the proposed scheme and compare it with a standard Virtual Element Method.



    加载中


    [1] D. A. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C. R. Math., 353 (2015), 31–34. https://doi.org/10.1016/j.crma.2014.10.013 doi: 10.1016/j.crma.2014.10.013
    [2] M. Cicuttin, A. Ern, N. Pignet, Hybrid high-order methods: a primer with application to solid mechanics, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-81477-9
    [3] F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Mod. Meth. Appl. Sci., 15 (2005), 1533–1551. https://doi.org/10.1142/S0218202505000832 doi: 10.1142/S0218202505000832
    [4] N. Sukumar, A. Tabarraei, Conforming polygonal finite elements, Int. J. Numer. Meth. Eng., 61 (2004), 2045–2066. https://doi.org/10.1002/nme.1141 doi: 10.1002/nme.1141
    [5] A. Cangiani, Z. Dong, E. H. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-67673-9
    [6] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, A. Russo, Basic principles of virtual element methods, Math. Mod. Meth. Appl. Sci., 23 (2013), 199–214. https://doi.org/10.1142/S0218202512500492 doi: 10.1142/S0218202512500492
    [7] L. Beirão da Veiga, F. Brezzi, L. D. Marini, Virtual Elements for linear elasticity problems, SIAM J. Numer. Anal., 51 (2013), 794–812. https://doi.org/10.1137/120874746 doi: 10.1137/120874746
    [8] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The Hitchhiker's Guide to the Virtual Element Method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541–1573. https://doi.org/10.1142/S021820251440003X doi: 10.1142/S021820251440003X
    [9] L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Virtual Element Methods for general second-order elliptic problems on polygonal meshes, Math. Mod. Meth. Appl. Sci., 26 (2015), 729–750. https://doi.org/10.1142/S0218202516500160 doi: 10.1142/S0218202516500160
    [10] L. Beirão da Veiga, C. Lovadina, D. Mora, A Virtual Element Method for elastic and inelastic problems on polytope meshes, Comput. Meth. Appl. Mech. Eng., 295 (2015), 327–346. https://doi.org/10.1016/j.cma.2015.07.013 doi: 10.1016/j.cma.2015.07.013
    [11] E. Artioli, S. de Miranda, C. Lovadina, L. Patruno, A stress/displacement Virtual Element method for plane elasticity problems, Comput. Meth. Appl. Mech. Eng., 325 (2017), 155–174. https://doi.org/10.1016/j.cma.2017.06.036 doi: 10.1016/j.cma.2017.06.036
    [12] F. Dassi, C. Lovadina, M. Visinoni, A three-dimensional Hellinger-Reissner virtual element method for linear elasticity problems, Comput. Meth. Appl. Mech. Eng., 364 (2020), 112910. https://doi.org/10.1016/j.cma.2020.112910 doi: 10.1016/j.cma.2020.112910
    [13] F. Dassi, C. Lovadina, M. Visinoni, Hybridization of the virtual element method for linear elasticity problems, Math. Mod. Meth. Appl. Sci., 31 (2021), 2979–3008. https://doi.org/10.1142/S0218202521500676 doi: 10.1142/S0218202521500676
    [14] M. F. Benedetto, S. Berrone, A. Borio, The Virtual Element Method for underground flow simulations in fractured media, In: G. Ventura, E. Benvenuti, Advances in discretization methods, SEMA SIMAI Springer Series, Cham: Springer, 12 (2016), 167–186. https://doi.org/10.1007/978-3-319-41246-7_8
    [15] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306 (2016), 148–166. https://doi.org/10.1016/j.jcp.2015.11.034 doi: 10.1016/j.jcp.2015.11.034
    [16] M. F. Benedetto, A. Borio, A. Scialò, Mixed Virtual Elements for discrete fracture network simulations, Finite Elem. Anal. Des., 134 (2017), 55–67. https://doi.org/10.1016/j.finel.2017.05.011 doi: 10.1016/j.finel.2017.05.011
    [17] S. Berrone, M. Busetto, F. Vicini, Virtual Element simulation of two-phase flow of immiscible fluids in Discrete Fracture Networks, J. Comput. Phys., 473 (2023), 111735. https://doi.org/10.1016/j.jcp.2022.111735 doi: 10.1016/j.jcp.2022.111735
    [18] A. Borio, F. P. Hamon, N. Castelletto, J. A. White, R. R. Settgast, Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics, Comput. Methods Appl. Mech. Eng., 383 (2021), 113917. https://doi.org/10.1016/j.cma.2021.113917 doi: 10.1016/j.cma.2021.113917
    [19] S. Berrone, M. Busetto, A virtual element method for the two-phase flow of immiscible fluids in porous media, Comput. Geosci., 26 (2022), 195–216. https://doi.org/10.1007/s10596-021-10116-4 doi: 10.1007/s10596-021-10116-4
    [20] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 311 (2016), 18–40. https://doi.org/10.1016/j.cma.2016.07.043 doi: 10.1016/j.cma.2016.07.043
    [21] S. Berrone, A. Borio, G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 340 (2018), 500–529. https://doi.org/10.1016/j.cma.2018.05.027 doi: 10.1016/j.cma.2018.05.027
    [22] S. Berrone, A. Borio, F. Marcon, Lowest order stabilization free Virtual Element Method for the Poisson equation, arXiv, 2021. https://doi.org/10.48550/arXiv.2103.16896 doi: 10.48550/arXiv.2103.16896
    [23] A. Borio, C. Lovadina, F. Marcon, M. Visinoni, A lowest order stabilization-free mixed Virtual Element Method, Comput. Math. Appl., 160 (2024), 161–170. https://doi.org/10.1016/j.camwa.2024.02.024 doi: 10.1016/j.camwa.2024.02.024
    [24] S. Berrone, A. Borio, F. Marcon, Comparison of standard and stabilization free Virtual Elements on anisotropic elliptic problems, Appl. Math. Lett., 129 (2022), 107971. https://doi.org/10.1016/j.aml.2022.107971 doi: 10.1016/j.aml.2022.107971
    [25] S. Berrone, A. Borio, F. Marcon, G. Teora, A first-order stabilization-free Virtual Element Method, Appl. Math. Lett., 142 (2023), 108641. https://doi.org/10.1016/j.aml.2023.108641 doi: 10.1016/j.aml.2023.108641
    [26] A. M. D'Altri, S. de Miranda, L. Patruno, E. Sacco, An enhanced VEM formulation for plane elasticity, Comput. Methods Appl. Mech. Eng., 376 (2021), 113663. https://doi.org/10.1016/j.cma.2020.113663 doi: 10.1016/j.cma.2020.113663
    [27] A. Chen, N. Sukumar, Stabilization-free virtual element method for plane elasticity, Comput. Math. Appl., 138 (2023), 88–105. https://doi.org/10.1016/j.camwa.2023.03.002 doi: 10.1016/j.camwa.2023.03.002
    [28] A. Chen, N. Sukumar, Stabilization-free serendipity virtual element method for plane elasticity, Comput. Methods Appl. Mech. Eng., 404 (2023), 115784. https://doi.org/10.1016/j.cma.2022.115784 doi: 10.1016/j.cma.2022.115784
    [29] B. B. Xu, F. Peng, P. Wriggers, Stabilization-free virtual element method for finite strain applications, Comput. Methods Appl. Mech. Eng., 417 (2023), 116555. https://doi.org/10.1016/j.cma.2023.116555 doi: 10.1016/j.cma.2023.116555
    [30] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0
    [31] L. P. Franca, S. L. Frey, T. J. R. Hughes, Stabilized finite element methods: Ⅰ. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Eng., 95 (1992), 253–276. https://doi.org/10.1016/0045-7825(92)90143-8 doi: 10.1016/0045-7825(92)90143-8
    [32] L. Beirão da Veiga, F. Dassi, C. Lovadina, G. Vacca, SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis, ESAIM: M2AN, 55 (2021), 2233–2258. https://doi.org/10.1051/m2an/2021050 doi: 10.1051/m2an/2021050
    [33] A. Cangiani, E. H. Georgoulis, T. Pryer, O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857–893. https://doi.org/10.1007/s00211-017-0891-9 doi: 10.1007/s00211-017-0891-9
    [34] P. Clément, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numer., 9 (1975), 77–84. https://doi.org/10.1051/m2an/197509R200771 doi: 10.1051/m2an/197509R200771
    [35] C. Talischi, G. H. Paulino, A. Pereira, I. F. M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidisc. Optim., 45 (2012), 309–328. https://doi.org/10.1007/s00158-011-0706-z doi: 10.1007/s00158-011-0706-z
    [36] P. F. Antonietti, S. Berrone, A. Borio, A. D'Auria, M. Verani, S. Weisser, Anisotropic a posteriori error estimate for the virtual element method, IMA J. Numer. Anal., 42 (2022), 1273–1312. https://doi.org/10.1093/imanum/drab001 doi: 10.1093/imanum/drab001
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(963) PDF downloads(88) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog