Research article Special Issues

Convergence for global curve diffusion flows

  • Received: 14 April 2020 Accepted: 12 February 2021 Published: 09 March 2021
  • In this note we establish exponentially fast smooth convergence for global curve diffusion flows, and discuss open problems relating embeddedness to global existence (Giga's conjecture) and the shape of Type I singularities (Chou's conjecture).

    Citation: Glen Wheeler. Convergence for global curve diffusion flows[J]. Mathematics in Engineering, 2022, 4(1): 1-13. doi: 10.3934/mine.2022001

    Related Papers:

  • In this note we establish exponentially fast smooth convergence for global curve diffusion flows, and discuss open problems relating embeddedness to global existence (Giga's conjecture) and the shape of Type I singularities (Chou's conjecture).



    加载中


    [1] B. Andrews, J. McCoy, G. Wheeler, V. M. Wheeler, Closed ideal planar curves, Geom. Topol., 24 (2020), 1019-1049.
    [2] K. S. Chou, A blow-up criterion for the curve shortening flow by surface diffusion, Hokkaido Math. J., 32 (2003), 1-19.
    [3] G. Dziuk, E. Kuwert, R. Schätzle, Evolution of elastic curves in $ \mathbb{R}^n$: existence and computation, SIAM J. Math. Anal., 33 (2002), 1228-1245.
    [4] J. Escher, P. B. Mucha, The surface diffusion flow on rough phase spaces, Discrete Cont. Dyn. A, 26 (2010), 431-453.
    [5] M. Edwards, A. Gerhardt-Bourke, J. McCoy, G. Wheeler, V. M. Wheeler, The shrinking figure eight and other solitons for the curve diffusion flow, J. Elasticity, 119 (2015), 191-211.
    [6] G. Huisken, Flow by mean-curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266.
    [7] J. LeCrone, Y. Z. Shao, G. Simonett, The surface diffusion and the Willmore flow for uniformly regular hypersurfaces, Discrete Cont. Dyn. S, 13 (2020), 3503-3524.
    [8] T. Miura, S. Okabe, On the isoperimetric inequality and surface diffusion flow for multiply winding curves, 2019, arXiv: 1909.08816.
    [9] T. Nagasawa, K. Nakamura, Interpolation inequalities between the deviation of curvature and the isoperimetric ratio with applications to geometric flows, Adv. Differential Equ., 24 (2019), 581-608.
    [10] G. Wheeler, On the curve diffusion flow of closed plane curves, Ann. Mat. Pur. Appl., 192 (2013), 931-950.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2057) PDF downloads(192) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog