We present an integral approach to Pogorelov's Hessian estimates for the Monge-Ampère equation, originally obtained via a pointwise argument.
Citation: Yu Yuan. A monotonicity approach to Pogorelov's Hessian estimates for Monge- Ampère equation[J]. Mathematics in Engineering, 2023, 5(2): 1-6. doi: 10.3934/mine.2023037
We present an integral approach to Pogorelov's Hessian estimates for the Monge-Ampère equation, originally obtained via a pointwise argument.
[1] | L. A. Caffarelli, A priori estimates and the geometry of the Monge Ampère equation, In: Nonlinear partial differential equations in differential geometry, Providence, RI: Amer. Math. Soc., 1996, 5–63. |
[2] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[3] | A. V. Pogorelov, The Minkowski multidimensional problem, New York-Toronto-London: Halsted Press [John Wiley & Sons], 1978. |