We present a Kolmogorov-like algorithm for the computation of a normal form in the neighborhood of an invariant torus in 'isochronous' Hamiltonian systems, i.e., systems with Hamiltonians of the form $ {\mathcal{H}} = {\mathcal{H}}_0+\varepsilon {\mathcal{H}}_1 $ where $ {\mathcal{H}}_0 $ is the Hamiltonian of $ N $ linear oscillators, and $ {\mathcal{H}}_1 $ is expandable as a polynomial series in the oscillators' canonical variables. This method can be regarded as a normal form analogue of a corresponding Lindstedt method for coupled oscillators. We comment on the possible use of the Lindstedt method itself under two distinct schemes, i.e., one producing series analogous to those of the Birkhoff normal form scheme, and another, analogous to the Kolomogorov normal form scheme in which we fix in advance the frequency of the torus.
Citation: Rita Mastroianni, Christos Efthymiopoulos. Kolmogorov algorithm for isochronous Hamiltonian systems[J]. Mathematics in Engineering, 2023, 5(2): 1-35. doi: 10.3934/mine.2023035
We present a Kolmogorov-like algorithm for the computation of a normal form in the neighborhood of an invariant torus in 'isochronous' Hamiltonian systems, i.e., systems with Hamiltonians of the form $ {\mathcal{H}} = {\mathcal{H}}_0+\varepsilon {\mathcal{H}}_1 $ where $ {\mathcal{H}}_0 $ is the Hamiltonian of $ N $ linear oscillators, and $ {\mathcal{H}}_1 $ is expandable as a polynomial series in the oscillators' canonical variables. This method can be regarded as a normal form analogue of a corresponding Lindstedt method for coupled oscillators. We comment on the possible use of the Lindstedt method itself under two distinct schemes, i.e., one producing series analogous to those of the Birkhoff normal form scheme, and another, analogous to the Kolomogorov normal form scheme in which we fix in advance the frequency of the torus.
[1] | M. Bartuccelli, G. Gentile, Lindstedt series for perturbations of isochronous systems: a review of the general theory, Rev. Math. Phys., 14 (2002), 121–171. http://doi.org/10.1142/S0129055X02001120 doi: 10.1142/S0129055X02001120 |
[2] | H. Christodoulidi, C. Efthymiopoulos, T. Bountis, Energy localization on q-tori, long-term stability, and the interpretation of fermi-pasta-ulam recurrences, Phys. Rev. E, 81 (2010), 016210. http://doi.org/10.1103/PhysRevE.81.016210 doi: 10.1103/PhysRevE.81.016210 |
[3] | H. Christodoulidi, C. Efthymiopoulos, Low-dimensional $q$-tori in FPU lattices: dynamics and localization properties, Physica D, 261 (2013), 92–113. http://doi.org/10.1016/j.physd.2013.07.007 doi: 10.1016/j.physd.2013.07.007 |
[4] | L. Corsi, G. Gentile, M. Procesi, KAM theory in configuration space and cancellations in the Lindstedt series, Commun. Math. Phys., 302 (2011), 359–402. http://doi.org/10.1007/s00220-010-1131-7 doi: 10.1007/s00220-010-1131-7 |
[5] | C. Efthymiopoulos, A. Giorgilli, G. Contopoulos, Nonconvergence of formal integrals Ⅱ. Improved estimates for the optimal order of truncation, J. Phys. A: Math. Gen., 37 (2004), 10831. http://doi.org/10.1088/0305-4470/37/45/008 doi: 10.1088/0305-4470/37/45/008 |
[6] | L. H. Eliasson, Absolutely convergent series expansions for quasi periodic motions, Mathematical Physics Electronic Journal, 2 (1996), 1–33. |
[7] | S. Flach, M. V. Ivanchenko, O. I. Kanakov, q-Breathers and the fermi-pasta-ulam problem, Phys. Rev. Lett., 95 (2005), 064102. http://doi.org/10.1103/PhysRevLett.95.064102 doi: 10.1103/PhysRevLett.95.064102 |
[8] | S. Flach, M. V. Ivanchenko, O. I. Kanakov, $q$-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability, Phys. Rev. E, 73 (2006), 036618. http://doi.org/10.1103/PhysRevE.73.036618 doi: 10.1103/PhysRevE.73.036618 |
[9] | M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments, The Astronomical Journal, 69 (1964), 73–79. |
[10] | L. Galgani, Foundations of physics in Milan, Padua and Paris. Newtonian trajectories from celestial mechanics to atomic physics, Mathematics in Engineering, 3 (2021), 1–24. http://doi.org/10.3934/mine.2021045 doi: 10.3934/mine.2021045 |
[11] | G. Gallavotti, Twistless KAM tori, Commun. Math. Phys., 164 (1994), 145–156. http://doi.org/10.1007/BF02108809 doi: 10.1007/BF02108809 |
[12] | G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems. A review, Rev. Math. Phys., 6 (1994), 343–411. https://doi.org/10.1142/S0129055X9400016X doi: 10.1142/S0129055X9400016X |
[13] | A. Giorgilli, Small denominators and exponential stability: from Poincaré to the present time, Seminario Mat. e. Fis. di Milano, 68 (1998), 19. http://doi.org/10.1007/BF02925829 doi: 10.1007/BF02925829 |
[14] | A. Giorgilli, U. Locatelli, On classical series expansions for quasi-periodic motions, Mathematical Physics Electronic Journal, 3 (1997), 1–25. |
[15] | A. Jorba, J. Masdemont, Dynamics in the center manifold of the collinear points of the restricted three body problem, Physica D, 132 (1999), 189–213. http://doi.org/10.1016/S0167-2789(99)00042-1 doi: 10.1016/S0167-2789(99)00042-1 |
[16] | A. Lindstedt, Ueber die allgemeine form der integrale des dreikörperproblems, Astron. Nachr., 105 (1883), 97–112. http://doi.org/10.1002/ASNA.18831050702 doi: 10.1002/ASNA.18831050702 |
[17] | A. Lindstedt, Ueber die integration einer gewissen differentialgleichung, Astron. Nachr., 104 (1883), 145–150. http://doi.org/10.1002/asna.18831041002 doi: 10.1002/asna.18831041002 |
[18] | A. Lindstedt, Sur les séries trigonométriques dans le problème des trois corps, Bulletin Astronomique, Serie I, 3 (1886), 217–221. |
[19] | H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome II, Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin, Paris: Gauthier-Villars et fil, 1893. |
[20] | M. Sansottera, V. Danesi, Kolmogorov variation: Kam with knobs (à la Kolmogorov), 2021, arXiv: 2109.06345. |