The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $ L^\infty $ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.
Citation: Luis Silvestre, Stanley Snelson. Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian[J]. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023034
The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $ L^\infty $ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.
[1] | R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Anal. Appl., 9 (2011), 113–134. https://doi.org/10.1142/S0219530511001777 doi: 10.1142/S0219530511001777 |
[2] | R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions, Arch. Rational Mech. Anal., 202 (2011), 599–661. https://doi.org/10.1007/s00205-011-0432-0 doi: 10.1007/s00205-011-0432-0 |
[3] | R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915–1010. https://doi.org/10.1016/j.jfa.2011.10.007 doi: 10.1016/j.jfa.2011.10.007 |
[4] | R. Alonso, Y. Morimoto, W. Sun, T. Yang, De Giorgi argument for weighted $L^2 \cap L^\infty$ solutions to the non-cutoff Boltzmann equation, 2020, arXiv: 2010.10065. |
[5] | R. Alonso, Y. Morimoto, W. Sun, T. Yang, Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., 37 (2021), 189–292. https://doi.org/10.4171/rmi/1206 doi: 10.4171/rmi/1206 |
[6] | S. Cameron, S. Snelson, Velocity decay estimates for Boltzmann equation with hard potentials, Nonlinearity, 33 (2020), 2941–2958. https://doi.org/10.1088/1361-6544/ab7729 doi: 10.1088/1361-6544/ab7729 |
[7] | L. Desvillettes, C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245–316. https://doi.org/10.1007/s00222-004-0389-9 doi: 10.1007/s00222-004-0389-9 |
[8] | R. Duan, S. Liu, S. Sakamoto, R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Commun. Pure Appl. Math., 74 (2021), 932–1020. https://doi.org/10.1002/cpa.21920 doi: 10.1002/cpa.21920 |
[9] | P. T. Gressman, R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771–847. https://doi.org/10.1090/S0894-0347-2011-00697-8 doi: 10.1090/S0894-0347-2011-00697-8 |
[10] | P. T. Gressman, R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349–2384. https://doi.org/10.1016/j.aim.2011.05.005 doi: 10.1016/j.aim.2011.05.005 |
[11] | L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Commun. Math. Phys., 312 (2012), 447–476. https://doi.org/10.1007/s00220-012-1481-4 doi: 10.1007/s00220-012-1481-4 |
[12] | C. Henderson, S. Snelson, A. Tarfulea, Local well-posedness of the Boltzmann equation with polynomially decaying initial data, Kinet. Relat. Mod., 13 (2020), 837–867. https://doi.org/10.3934/krm.2020029 doi: 10.3934/krm.2020029 |
[13] | F. Hérau, D. Tonon, I. Tristani, Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off, Commun. Math. Phys., 377 (2020), 697–771. https://doi.org/10.1007/s00220-020-03682-8 doi: 10.1007/s00220-020-03682-8 |
[14] | C. Imbert, C. Mouhot, L. Silvestre, Decay estimates for large velocities in the Boltzmann equation without cutoff, J. Éc. polytech. Math., 7 (2020), 143–184. https://doi.org/10.5802/jep.113 |
[15] | C. Imbert, C. Mouhot, L. Silvestre, Gaussian lower bounds for the Boltzmann equation without cutoff, SIAM J. Math. Anal., 52 (2020), 2930–2944. https://doi.org/10.1137/19M1252375 doi: 10.1137/19M1252375 |
[16] | C. Imbert, L. Silvestre, Regularity for the Boltzmann equation conditional to macroscopic bounds, EMS Surv. Math. Sci., 7 (2020), 117–172. https://doi.org/10.4171/emss/37 doi: 10.4171/emss/37 |
[17] | C. Imbert, L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., 22 (2020), 507–592. https://doi.org/10.4171/jems/928 doi: 10.4171/jems/928 |
[18] | C. Imbert, L. Silvestre, The Schauder estimate for kinetic integral equations, Anal. PDE, 14 (2021), 171–204. https://doi.org/10.2140/apde.2021.14.171 doi: 10.2140/apde.2021.14.171 |
[19] | C. Imbert, L. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off, J. Amer. Math. Soc., in press. |
[20] | J. Kim, Y. Guo, H. J. Hwang, An $L^2$ to $L^\infty$ framework for the Landau equation, Peking Math. J., 3 (2020), 131–202. https://doi.org/10.1007/s42543-019-00018-x doi: 10.1007/s42543-019-00018-x |
[21] | Y. Morimoto, T. Yang, Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl., 13 (2015), 663–683. https://doi.org/10.1142/S0219530514500079 doi: 10.1142/S0219530514500079 |
[22] | L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Commun. Math. Phys., 348 (2016), 69–100. https://doi.org/10.1007/s00220-016-2757-x doi: 10.1007/s00220-016-2757-x |
[23] | C. Villani, A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, Amsterdam: North-Holland, 2002, 71–305. https://doi.org/10.1016/S1874-5792(02)80004-0 |
[24] | H. Zhang, Global solutions in $W_k^{\zeta, p} L^{\infty}_x L^2_v$ for the Boltzmann equation without cutoff, 2020, arXiv: 2008.10269. |