Research article Special Issues

Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian

  • Received: 30 November 2021 Revised: 11 May 2022 Accepted: 11 May 2022 Published: 19 May 2022
  • The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $ L^\infty $ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.

    Citation: Luis Silvestre, Stanley Snelson. Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian[J]. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023034

    Related Papers:

  • The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $ L^\infty $ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.



    加载中


    [1] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Anal. Appl., 9 (2011), 113–134. https://doi.org/10.1142/S0219530511001777 doi: 10.1142/S0219530511001777
    [2] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions, Arch. Rational Mech. Anal., 202 (2011), 599–661. https://doi.org/10.1007/s00205-011-0432-0 doi: 10.1007/s00205-011-0432-0
    [3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915–1010. https://doi.org/10.1016/j.jfa.2011.10.007 doi: 10.1016/j.jfa.2011.10.007
    [4] R. Alonso, Y. Morimoto, W. Sun, T. Yang, De Giorgi argument for weighted $L^2 \cap L^\infty$ solutions to the non-cutoff Boltzmann equation, 2020, arXiv: 2010.10065.
    [5] R. Alonso, Y. Morimoto, W. Sun, T. Yang, Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., 37 (2021), 189–292. https://doi.org/10.4171/rmi/1206 doi: 10.4171/rmi/1206
    [6] S. Cameron, S. Snelson, Velocity decay estimates for Boltzmann equation with hard potentials, Nonlinearity, 33 (2020), 2941–2958. https://doi.org/10.1088/1361-6544/ab7729 doi: 10.1088/1361-6544/ab7729
    [7] L. Desvillettes, C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245–316. https://doi.org/10.1007/s00222-004-0389-9 doi: 10.1007/s00222-004-0389-9
    [8] R. Duan, S. Liu, S. Sakamoto, R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Commun. Pure Appl. Math., 74 (2021), 932–1020. https://doi.org/10.1002/cpa.21920 doi: 10.1002/cpa.21920
    [9] P. T. Gressman, R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771–847. https://doi.org/10.1090/S0894-0347-2011-00697-8 doi: 10.1090/S0894-0347-2011-00697-8
    [10] P. T. Gressman, R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349–2384. https://doi.org/10.1016/j.aim.2011.05.005 doi: 10.1016/j.aim.2011.05.005
    [11] L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Commun. Math. Phys., 312 (2012), 447–476. https://doi.org/10.1007/s00220-012-1481-4 doi: 10.1007/s00220-012-1481-4
    [12] C. Henderson, S. Snelson, A. Tarfulea, Local well-posedness of the Boltzmann equation with polynomially decaying initial data, Kinet. Relat. Mod., 13 (2020), 837–867. https://doi.org/10.3934/krm.2020029 doi: 10.3934/krm.2020029
    [13] F. Hérau, D. Tonon, I. Tristani, Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off, Commun. Math. Phys., 377 (2020), 697–771. https://doi.org/10.1007/s00220-020-03682-8 doi: 10.1007/s00220-020-03682-8
    [14] C. Imbert, C. Mouhot, L. Silvestre, Decay estimates for large velocities in the Boltzmann equation without cutoff, J. Éc. polytech. Math., 7 (2020), 143–184. https://doi.org/10.5802/jep.113
    [15] C. Imbert, C. Mouhot, L. Silvestre, Gaussian lower bounds for the Boltzmann equation without cutoff, SIAM J. Math. Anal., 52 (2020), 2930–2944. https://doi.org/10.1137/19M1252375 doi: 10.1137/19M1252375
    [16] C. Imbert, L. Silvestre, Regularity for the Boltzmann equation conditional to macroscopic bounds, EMS Surv. Math. Sci., 7 (2020), 117–172. https://doi.org/10.4171/emss/37 doi: 10.4171/emss/37
    [17] C. Imbert, L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., 22 (2020), 507–592. https://doi.org/10.4171/jems/928 doi: 10.4171/jems/928
    [18] C. Imbert, L. Silvestre, The Schauder estimate for kinetic integral equations, Anal. PDE, 14 (2021), 171–204. https://doi.org/10.2140/apde.2021.14.171 doi: 10.2140/apde.2021.14.171
    [19] C. Imbert, L. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off, J. Amer. Math. Soc., in press.
    [20] J. Kim, Y. Guo, H. J. Hwang, An $L^2$ to $L^\infty$ framework for the Landau equation, Peking Math. J., 3 (2020), 131–202. https://doi.org/10.1007/s42543-019-00018-x doi: 10.1007/s42543-019-00018-x
    [21] Y. Morimoto, T. Yang, Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl., 13 (2015), 663–683. https://doi.org/10.1142/S0219530514500079 doi: 10.1142/S0219530514500079
    [22] L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Commun. Math. Phys., 348 (2016), 69–100. https://doi.org/10.1007/s00220-016-2757-x doi: 10.1007/s00220-016-2757-x
    [23] C. Villani, A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, Amsterdam: North-Holland, 2002, 71–305. https://doi.org/10.1016/S1874-5792(02)80004-0
    [24] H. Zhang, Global solutions in $W_k^{\zeta, p} L^{\infty}_x L^2_v$ for the Boltzmann equation without cutoff, 2020, arXiv: 2008.10269.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1946) PDF downloads(218) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog