Research article Special Issues

Near-resonances and detuning in classical and quantum mechanics

  • Received: 22 May 2021 Revised: 06 December 2021 Accepted: 07 December 2021 Published: 17 January 2022
  • From the point of view of perturbation theory, (perturbations of) near-resonant systems are plagued by small denominators. These do not affect (perturbations of) fully resonant systems; so it is in many ways convenient to approximate near resonant systems as fully resonant ones, which correspond to considering the "detuning" as a perturbation itself. This approach has proven very fruitful in Classical Mechanics, but it is also standard in (perturbations of) Quantum Mechanical systems. Actually, its origin may be traced back (at least) to the Rayleigh-Ritz method for computing eigenvalues and eigenvectors of perturbed matrix problems. We will discuss relations between these approaches, and consider some case study models in the different contexts.

    Citation: G. Gaeta, G. Pucacco. Near-resonances and detuning in classical and quantum mechanics[J]. Mathematics in Engineering, 2023, 5(1): 1-44. doi: 10.3934/mine.2023005

    Related Papers:

  • From the point of view of perturbation theory, (perturbations of) near-resonant systems are plagued by small denominators. These do not affect (perturbations of) fully resonant systems; so it is in many ways convenient to approximate near resonant systems as fully resonant ones, which correspond to considering the "detuning" as a perturbation itself. This approach has proven very fruitful in Classical Mechanics, but it is also standard in (perturbations of) Quantum Mechanical systems. Actually, its origin may be traced back (at least) to the Rayleigh-Ritz method for computing eigenvalues and eigenvectors of perturbed matrix problems. We will discuss relations between these approaches, and consider some case study models in the different contexts.



    加载中


    [1] M. K. Ali, The quantum normal form and its equivalents, J. Math. Phys., 26 (1985), 2565–2572. http://dx.doi.org/10.1063/1.526775 doi: 10.1063/1.526775
    [2] V. I. Arnold, Mathematical methods of classical mechanics, New York, NY: Springer, 1989. http://dx.doi.org/10.1007/978-1-4757-2063-1
    [3] D. V. Anosov, S. Kh. Aranson, V. I. Arnold, I. U. Bronshtein, V. Z. Grines, Yu. S. Ilyashenko, Dynamical systems I: ordinary differential equations and smooth dynamical systems, Berlin Heidelberg: Springer, 1988.
    [4] V. I. Arnold, Dynamical systems III: classical mechanics, Berlin, Heidelberg: Springer, 1988. http://dx.doi.org/10.1007/978-3-662-02535-2
    [5] V. I. Arnold, Dynamical systems V: bifurcation theory and catastrophe theory, Berlin, Heidelberg: Springer, 1994. http://dx.doi.org/10.1007/978-3-642-57884-7
    [6] D. Boccaletti, G. Pucacco, Theory of orbits, Berlin, Heidelberg: Springer, 1999. http://dx.doi.org/10.1007/978-3-662-09240-8
    [7] M. Born, P. Jordan, On quantum mechanics, Zeit. Phys., 34 (1925), 858–888.
    [8] M. Born, W. Heisenberg, P. Jordan, On quantum mechanics Ⅱ, Zeit. Phys., 35 (1926), 557–615.
    [9] S. Buyukdagli, M. Joyeux, On the application of canonical perturbation theory up to the dissociation threshold, Chem. Phys. Lett., 412 (2005), 200–205. http://dx.doi.org/10.1016/j.cplett.2005.06.115 doi: 10.1016/j.cplett.2005.06.115
    [10] H. W. Broer, G. A. Lunter, G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Physica D, 112 (1998), 64–80. http://dx.doi.org/10.1016/S0167-2789(97)00202-9 doi: 10.1016/S0167-2789(97)00202-9
    [11] M. Cargo, A. Gracia-Saz, R. G. Littlejohn, M. W. Reinsch, P. de M Rios, Quantum normal forms, Moyal star product and Bohr-Sommerfeld approximation, J. Phys. A: Math. Gen., 38 (2005), 1977–2004. http://dx.doi.org/10.1088/0305-4470/38/9/010 doi: 10.1088/0305-4470/38/9/010
    [12] B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52 (1979), 263–379. http://dx.doi.org/10.1016/0370-1573(79)90023-1 doi: 10.1016/0370-1573(79)90023-1
    [13] G. Cicogna, G. Gaeta, Symmetry and perturbation theory in nonlinear dynamics, Berlin, Heidelberg: Springer. 1999. http://dx.doi.org/10.1007/3-540-48874-X
    [14] G. Contopoulos, Order and chaos in dynamical astronomy, Berlin, Heidelberg: Springer, 2002. http://dx.doi.org/10.1007/978-3-662-04917-4
    [15] R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, Basel: Birkhauser, 1997. http://dx.doi.org/10.1007/978-3-0348-8891-2
    [16] R. H. Cushman, H. R. Dullin, A. Giacobbe, D. D. Holm, M. Joyeux, P. Lynch, et al., ${\rm{CO}}_2$ molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy, Phys. Rev. Lett., 93 (2004), 024302. http://dx.doi.org/10.1103/physrevlett.93.024302 doi: 10.1103/physrevlett.93.024302
    [17] A. S. Davydov, Quantum mechanics, Pergamon, 1965.
    [18] P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. R. Soc. Lond. A, 109 (1925), 642–653. http://dx.doi.org/10.1098/rspa.1925.0150 doi: 10.1098/rspa.1925.0150
    [19] B. Eckhardt, Birkhoff-Gustavson normal form in classical and quantum mechanics, J. Phys. A: Math. Gen., 19 (1986), 2961. http://dx.doi.org/10.1088/0305-4470/19/15/020 doi: 10.1088/0305-4470/19/15/020
    [20] K. Efstathiou, Metamorphoses of Hamiltonian systems with symmetries, Berlin, Heidelberg: Springer, 2005. http://dx.doi.org/10.1007/b105138
    [21] K. Efstathiou, D. A. Sadovskii, B. I. Zhilinskii, Classification of perturbations of the hydrogen atom by small static electric and magnetic fields, Proc. R. Soc. A, 463 (2007), 1771–1790. http://dx.doi.org/10.1098/rspa.2007.1843 doi: 10.1098/rspa.2007.1843
    [22] S. C. Farantos, R. Schinke, H. Guo, M. Joyeux, Energy localization in molecules, bifurcation phenomena, and their spectroscopic signatures: the global view, Chem. Rev., 109 (2009), 4248–4271. http://dx.doi.org/10.1021/cr900069m doi: 10.1021/cr900069m
    [23] F. Faure, B. I. Zhilinskii, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology?, Acta Appl. Math., 70 (2002), 265–282. http://dx.doi.org/10.1023/A:1013986518747 doi: 10.1023/A:1013986518747
    [24] G. Gaeta, Lie-Poincaré transformations and a reduction criterion in Landau theory, Ann. Phys., 312 (2004), 511–540. http://dx.doi.org/10.1016/j.aop.2004.04.001 doi: 10.1016/j.aop.2004.04.001
    [25] G. Gaeta, Poincaré-like approach to Landau theory. Ⅰ. General theory, J. Math. Phys., 56 (2015), 083504. http://dx.doi.org/10.1063/1.4927425 doi: 10.1063/1.4927425
    [26] G. Gaeta, Poincaré-like approach to Landau theory. Ⅱ. Simplifying the Landau-deGennes potential for nematic liquid crystals, J. Math. Phys., 56 (2015), 083505. http://dx.doi.org/10.1063/1.4927426 doi: 10.1063/1.4927426
    [27] G. Gaeta, On the isotropic-biaxial phase transition in nematic liquid crystals, EPL-Europhys. Lett., 112 (2015), 46002. http://dx.doi.org/10.1209/0295-5075/112/46002 doi: 10.1209/0295-5075/112/46002
    [28] A. Giorgilli, Notes on Hamiltonian Dynamical Systems, Cambridge University Press, 2022.
    [29] M. Golubitsky, D. G. Schaeffer, Singularities and groups in bifurcation theory, New York, NY: Springer, 1985. http://dx.doi.org/10.1007/978-1-4612-5034-0
    [30] S. Graffi, Th. Paul, Convergence of a quantum normal form and an exact quantization formula, J. Funct. Anal., 262 (2012), 3340–3393. http://dx.doi.org/10.1016/j.jfa.2012.01.010 doi: 10.1016/j.jfa.2012.01.010
    [31] V. Guillemin, Th. Paul, Some remarks about semiclassical trace invariants and quantum normal forms, Commun. Math. Phys., 294 (2010), 1. http://dx.doi.org/10.1007/s00220-009-0920-3 doi: 10.1007/s00220-009-0920-3
    [32] H. Hanßmann, Local and semi-local bifurcations in Hamiltonian dynamical systems, Berlin, Heidelberg: Springer, 2007. http://dx.doi.org/10.1007/3-540-38894-X
    [33] M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964), 73–79.
    [34] M. Herman, D. S. Perry, Molecular spectroscopy and dynamics: a polyad-based perspective, Phys. Chem. Chem. Phys., 15 (2013), 9970–9993. http://dx.doi.org/10.1039/C3CP50463H doi: 10.1039/C3CP50463H
    [35] J. Henrard, Periodic orbits emanating from a resonant equilibrium, Celestial Mechanics, 1 (1970), 437–466. http://dx.doi.org/10.1007/BF01231143 doi: 10.1007/BF01231143
    [36] D. Hilbert, Theory of algebraic invariants, Cambridge: Cambridge University Press, 1993.
    [37] T. Iwai, B. I. Zhilinskii, Local description of band rearrangements, Acta Appl. Math., 137 (2015), 97–121. http://dx.doi.org/10.1007/s10440-014-9992-y doi: 10.1007/s10440-014-9992-y
    [38] M. P. Jacobson, R. W. Field, Acetylene at the threshold of isomerization, J. Phys. Chem. A, 104 (2000), 3073–3086. http://dx.doi.org/10.1021/jp992428u doi: 10.1021/jp992428u
    [39] M. Joyeux, Gustavson's procedure and the dynamics of highly excited vibrational states, J. Chem. Phys., 109 (1998), 2111–2122. http://dx.doi.org/10.1063/1.476724 doi: 10.1063/1.476724
    [40] M. Joyeux, D. Sugny, M. Lombardi, Vibrational dynamics up to the dissociation threshold: A case study of two-dimensional HOCI, J. Chem. Phys., 113 (2000), 9610–9621. http://dx.doi.org/10.1063/1.1321031 doi: 10.1063/1.1321031
    [41] M. Joyeux, D. Sugny, Canonical perturbation theory for highly excited dynamics, Can. J. Phys., 80 (2002), 1459–1480. http://dx.doi.org/10.1139/p02-075 doi: 10.1139/p02-075
    [42] S. V. Krasnoshchekov, N. F. Stepanov, Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules, J. Chem. Phys., 139 (2013), 184101. http://dx.doi.org/10.1063/1.4829143 doi: 10.1063/1.4829143
    [43] M. Kummer, On resonant non linearly coupled oscillators with two equal frequencies, Commun. Math. Phys., 48 (1976), 53–79. http://dx.doi.org/10.1007/BF01609411 doi: 10.1007/BF01609411
    [44] L. D. Landau, E. M. Lifshitz, Quantum mechanics, Pergamon Press, 1958.
    [45] A. Marchesiello, G. Pucacco, Equivariant singularity analysis of the 2:2 resonance, Nonlinearity, 27 (2014), 43–66. http://dx.doi.org/10.1088/0951-7715/27/1/43 doi: 10.1088/0951-7715/27/1/43
    [46] A. B. McCoy, E. L. Sibert, Perturbative calculations of vibrational (J = 0) energy levels of linear molecules in normal coordinate representations, J. Chem. Phys., 95 (1991), 3476–3487. http://dx.doi.org/10.1063/1.460850 doi: 10.1063/1.460850
    [47] A. B. McCoy, D. C. Burleigh, E. L. Sibert, Rotation-vibration interactions in highly excited states of $SO_2$ and $H_2 CO$, J. Chem. Phys., 95 (1991), 7449–7465. http://dx.doi.org/10.1063/1.461371 doi: 10.1063/1.461371
    [48] A. B. McCoy, E. L. Sibert, The bending dynamics of acetylene, J. Chem. Phys., 105 (1996), 459–468. http://dx.doi.org/10.1063/1.471899 doi: 10.1063/1.471899
    [49] A. Messiah, Quantum mechanics, Wiley, 1958.
    [50] K. R. Meyer, G. R. Hall, D. C. Offin, Introduction to Hamiltonian dynamical systems and the N-body problem, Berlin: Springer, 2009.
    [51] J. Montaldi, M. Roberts, I. Stewart, Existence of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695–730. http://dx.doi.org/10.1088/0951-7715/3/3/009 doi: 10.1088/0951-7715/3/3/009
    [52] J. Montaldi, M. Roberts, I. Stewart, Stability of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731–772. http://dx.doi.org/10.1088/0951-7715/3/3/010 doi: 10.1088/0951-7715/3/3/010
    [53] J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Commun. Pure Appl. Math., 23 (1970), 609–636. http://dx.doi.org/10.1002/cpa.3160230406 doi: 10.1002/cpa.3160230406
    [54] A. I. Neishtadt, Averaging and passage through resonance, In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990, 1271–1283.
    [55] A. I. Neishtadt, Averaging, passage through resonances, and capture into resonance in two-frequency systems, Russ. Math. Surv., 69 (2014), 771. http://dx.doi.org/10.1070/RM2014v069n05ABEH004917 doi: 10.1070/RM2014v069n05ABEH004917
    [56] S. V. Ngoc, Quantum Birkhoff normal forms and semiclassical analysis, Adv. Stud. Pure Math., 55 (2009), 99–116. http://dx.doi.org/10.2969/aspm/05510099 doi: 10.2969/aspm/05510099
    [57] I. M. Pavlichenkov, Bifurcations in quantum rotational spectra, Phys. Rep., 226 (1993), 173–279. http://dx.doi.org/10.1016/0370-1573(93)90083-P doi: 10.1016/0370-1573(93)90083-P
    [58] I. M. Pavlichenkov, B. I. Zhilinskii, Critical phenomena in rotational spectra, Ann. Phys., 184 (1988), 1–32. http://dx.doi.org/10.1016/0003-4916(88)90268-0 doi: 10.1016/0003-4916(88)90268-0
    [59] L. E. Picasso, Lectures in quantum mechanics, Cham: Springer, 2016. http://dx.doi.org/10.1007/978-3-319-22632-3
    [60] G. Pierre, D. A. Sadovskii, B. I. Zhilinskii, Organization of quantum bifurcations: crossover of rovibrational bands in spherical top molecules, EPL-Europhys. Lett., 10 (1989), 409–414. http://dx.doi.org/10.1209/0295-5075/10/5/004 doi: 10.1209/0295-5075/10/5/004
    [61] H. Poincaré, Les méthodes nouvelles de la méchanique céleste, Paris: Gauthier-Villars, 1892.
    [62] G. Pucacco, A. Marchesiello, An energy-momentum map for the time-reversal symmetric 1:1 resonance with ${{\bf{Z}}}_2\times{{\bf{Z}}}_2$ symmetry, Physica D, 271 (2014), 10–18. http://dx.doi.org/10.1016/j.physd.2013.12.009 doi: 10.1016/j.physd.2013.12.009
    [63] J. P. Rose, M. E. Kellman, Bending dynamics from acetylene spectra: Normal, local, and precessional modes, J. Chem. Phys., 105 (1996), 10743–10754. http://dx.doi.org/10.1063/1.472882 doi: 10.1063/1.472882
    [64] S. Sachdev, Quantum phase transitions, Cambridge: Cambridge University Press, 1999. http://dx.doi.org/10.1017/CBO9780511622540
    [65] D. A. Sadovskii, B. I. Zhilinskii, Counting levels within vibrational polyads: Generating function approach, J. Chem. Phys., 103 (1995), 10520. http://dx.doi.org/10.1063/1.469836 doi: 10.1063/1.469836
    [66] D. A. Sadovskii, B. I. Zhilinskii, Quantum monodromy, its generalizations and molecular manifestations, Mol. Phys., 104 (2006), 2595–2615. http://dx.doi.org/10.1080/00268970600673363 doi: 10.1080/00268970600673363
    [67] D. A. Sadovskii, B. I. Zhilinskii, Hamiltonian systems with detuned 1:1:2 resonance: Manifestations of bidromy, Ann. Phys., 322 (2007), 164–200. http://dx.doi.org/10.1016/j.aop.2006.09.011 doi: 10.1016/j.aop.2006.09.011
    [68] J. A. Sanders, F. Verhulst, J. Murdock, Averaging methods in nonlinear dynamical systems, Berlin: Springer, 2007. http://dx.doi.org/10.1007/978-0-387-48918-6
    [69] M. Sanrey, M. Joyeux, Quantum mechanical and quasiclassical investigations of the time domain nonadiabatic dynamics of ${\rm{NO}}_2$ close to the bottom of the $X 2A_1 - A 2B_2$ conical intersection, J. Chem. Phys., 125 (2006), 014304. http://dx.doi.org/10.1063/1.2211609 doi: 10.1063/1.2211609
    [70] M. Sanrey, M. Joyeux, Slow periodic oscillations in time domain dynamics of ${\rm{NO}}_2$, J. Chem. Phys., 126 (2007), 074301. http://dx.doi.org/10.1063/1.2446920 doi: 10.1063/1.2446920
    [71] D. S. Schmidt, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mechanics, 9 (1974), 81–103. http://dx.doi.org/10.1007/BF01236166 doi: 10.1007/BF01236166
    [72] S. Schmidt, H. R. Dullin, Dynamics near the $p:-q$ resonance, Physica D, 239 (2010), 1884–1891. http://dx.doi.org/10.1016/j.physd.2010.06.012 doi: 10.1016/j.physd.2010.06.012
    [73] I. Shavitt, L. T. Redmon, Quasidegenerate perturbation theories. A canonical van Vleck formalism and its relationship to other approaches, J. Chem. Phys., 73 (1980), 5711–5717. http://dx.doi.org/10.1063/1.440050 doi: 10.1063/1.440050
    [74] E. L. Sibert, Theoretical studies of vibrationally excited polyatomic molecules using canonical Van Vleck perturbation theory, J. Chem. Phys., 88 (1988), 4378–4390. http://dx.doi.org/10.1063/1.453797 doi: 10.1063/1.453797
    [75] E. L. Sibert, A. B. McCoy, Quantum, semiclassical and classical dynamics of the bending modes of acetylene, J. Chem. Phys., 105 (1996), 469–478. http://dx.doi.org/10.1063/1.471900 doi: 10.1063/1.471900
    [76] J. F. Svitak, V. Tyng, M. E. Kellman, Bifurcation analysis of higher m:n resonance spectroscopic Hamiltonian, J. Phys. Chem. A, 106 (2002), 10797–10805. http://dx.doi.org/10.1021/jp0263976 doi: 10.1021/jp0263976
    [77] J. M. Tuwankotta, F. Verhulst, Symmetry and resonance in Hamiltonian systems, SIAM J. Appl. Math., 61 (2000), 1369–1385. http://dx.doi.org/10.1137/S0036139900365323 doi: 10.1137/S0036139900365323
    [78] F. Verhulst, Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 290 (1979), 435–465. http://dx.doi.org/10.1098/rsta.1979.0006 doi: 10.1098/rsta.1979.0006
    [79] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973), 47–57. http://dx.doi.org/10.1007/BF01405263 doi: 10.1007/BF01405263
    [80] B. I. Zhilinskii, Symmetry, invariants, and topology in molecular models, Phys. Rep., 341 (2001), 85–171. http://dx.doi.org/10.1016/S0370-1573(00)00089-2 doi: 10.1016/S0370-1573(00)00089-2
    [81] B. I. Zhilinskii, Rearrangement of energy bands: topological aspects, J. Math. Chem., 44 (2008), 1009–1022. http://dx.doi.org/10.1007/s10910-008-9359-6 doi: 10.1007/s10910-008-9359-6
    [82] B. I. Zhilinskii, Quantum bifurcations, New York: Springer, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3
    [83] B. I. Zhilinskii, G. Dhont, D. A. Sadovskii, New Qualitative Phenomena in Classical (Intramolecular) Dynamics and their Quantum Analogs, 2007. Available from: https://kb.osu.edu/handle/1811/31349.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1872) PDF downloads(205) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog