In this paper, dedicated to Ireneo Peral, we study the regularizing effect of some lower order terms in Dirichlet problems despite the presence of Hardy potentials in the right hand side.
Citation: David Arcoya, Lucio Boccardo, Luigi Orsina. Hardy potential versus lower order terms in Dirichlet problems: regularizing effects[J]. Mathematics in Engineering, 2023, 5(1): 1-14. doi: 10.3934/mine.2023004
In this paper, dedicated to Ireneo Peral, we study the regularizing effect of some lower order terms in Dirichlet problems despite the presence of Hardy potentials in the right hand side.
[1] | A. Adimurthi, L. Boccardo, G. R. Cirmi, L. Orsina, The regularizing effect of lower order terms in elliptic problems involving Hardy potential, Adv. Nonlinear Stud., 17 (2017), 311–317. http://dx.doi.org/10.1515/ans-2017-0001 doi: 10.1515/ans-2017-0001 |
[2] | D. Arcoya, L. Boccardo, Regularizing effect of the interplay between coefficients in some elliptic equations, J. Funct. Anal., 268 (2015), 1153–1166. http://dx.doi.org/10.1016/j.jfa.2014.11.011 doi: 10.1016/j.jfa.2014.11.011 |
[3] | D. Arcoya, L. Boccardo, Regularizing effect of $L^q$ interplay between coefficients in some elliptic equations, J. Math. Pures Appl., 111 (2018), 106–125. http://dx.doi.org/10.1016/j.matpur.2017.08.001 doi: 10.1016/j.matpur.2017.08.001 |
[4] | D. Arcoya, A. Molino, L. Moreno-Mérida, Existence and regularizing effect of degenerate lower order terms in elliptic equations beyond the Hardy constant, Adv. Nonlinear Stud., 18 (2018), 775–783. http://dx.doi.org/10.1515/ans-2018-0003 doi: 10.1515/ans-2018-0003 |
[5] | L. Boccardo, T. Gallouët. Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579. http://dx.doi.org/10.1016/0362-546X(92)90022-7 doi: 10.1016/0362-546X(92)90022-7 |
[6] | L. Boccardo, T. Gallouët, L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math., 73 (1997), 203–223. http://dx.doi.org/10.1007/BF02788144 doi: 10.1007/BF02788144 |
[7] | L. Boccardo, F. Murat, J.-P. Puel, $L^\infty$ estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326–333. http://dx.doi.org/10.1137/0523016 doi: 10.1137/0523016 |
[8] | L. Boccardo, L. Orsina, I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst., 16 (2006), 513–523. http://dx.doi.org/10.3934/dcds.2006.16.513 doi: 10.3934/dcds.2006.16.513 |
[9] | J. P. García Azorero, I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differ. Equations, 144 (1998), 441–476. http://dx.doi.org/10.1006/jdeq.1997.3375 doi: 10.1006/jdeq.1997.3375 |
[10] | I. Peral Alonso, F. Soria de Diego, Elliptic and parabolic equations involving the Hardy-Leray potential, De Gruyter, 2021. http://dx.doi.org/10.1515/9783110606270 |
[11] | G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Annales de l'Institut Fourier, 15 (1965), 189–257. http://dx.doi.org/10.5802/aif.204 doi: 10.5802/aif.204 |