The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval $ [\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $, we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at $ \mathrm{b_{0}}\in[\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point $ \mathrm{b_{1}} $, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.
Citation: Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad. Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus[J]. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268
The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval $ [\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $, we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at $ \mathrm{b_{0}}\in[\mathrm{b_{0}}, \mathrm{b_{1}}]\subset\Re $. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point $ \mathrm{b_{1}} $, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.
[1] | F. H. Jackson, On a $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[2] | W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469 |
[3] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[4] | T. Ernst, A comprehensive treatment of $q$-calculus, Birkhäuser Basel, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
[5] | T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. https://doi.org/10.2991/jnmp.2003.10.4.5 doi: 10.2991/jnmp.2003.10.4.5 |
[6] | H. Gauchman, Integral inequalities in $q$-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9 |
[7] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282 |
[8] | N. D. Phuong, F. M. Sakar, S. Etemad, S. Rezapour, A novel fractional structure of a multi-order quantum multi-integro-differential problem, Adv. Differ. Equ., 2020 (2020), 633. https://doi.org/10.1186/s13662-020-03092-z doi: 10.1186/s13662-020-03092-z |
[9] | S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. A. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469 |
[10] | S. Etemad, S. Rezapour, M. E. Samei, $\alpha$-$\psi$-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results, Adv. Differ. Equ., 2020 (2020), 218. https://doi.org/10.1186/s13662-020-02679-w doi: 10.1186/s13662-020-02679-w |
[11] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121 |
[12] | N. Alp, M. Z. Sarikaya, M. Kunt, I. Iscan, $q$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007 |
[13] | S. Bermudo, P. Kórus, J. E. N. Valdés, On $q$-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6 |
[14] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090 |
[15] | H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones J. Math., 40 (2021), 199–215. https://doi.org/10.22199/issn.0717-6279-2021-01-0013 doi: 10.22199/issn.0717-6279-2021-01-0013 |
[16] | S. I. Butt, M. Umar, H. Budak, New study on the quantum midpoint-type inequalities for twice $q$-differentiable functions via the Jensen-Mercer inequality, Symmetry, 15 (2023), 1038. https://doi.org/10.3390/sym15051038 doi: 10.3390/sym15051038 |
[17] | H. Budak, S. Erden, M. A. Ali, Simpson's and Newton's type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44 (2020), 378–390. https://doi.org/10.1002/mma.6742 doi: 10.1002/mma.6742 |
[18] | W. Luangboon, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Simpson- and Newton-type inequalities for convex functions via $(p, q)$-calculus, Mathematics, 9 (2021), 1338. https://doi.org/10.3390/math9121338 doi: 10.3390/math9121338 |
[19] | S. I. Butt, H. Budak, K. Nonlaopon, New quantum Mercer estimates of Simpson-Newton like inequalities via convexity, Symmetry, 14 (2022), 1935. https://doi.org/10.3390/sym14091935 doi: 10.3390/sym14091935 |
[20] | S. I. Butt, Q. U. Ain, H. Budak, New quantum variants of Simpson-Newton type inequalities via $(\alpha, m)$-convexity, Korean J. Math., 31 (2023), 161–180. https://doi.org/10.11568/kjm.2023.31.2.161 doi: 10.11568/kjm.2023.31.2.161 |
[21] | M. A. Latif, S. S. Dragomir, E. Momoniat, Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ. Sci., 29 (2017), 263–273. https://doi.org/10.1016/j.jksus.2016.07.001 doi: 10.1016/j.jksus.2016.07.001 |
[22] | S. Rashid, S. I. Butt, S. Kanwal, H. Ahmad, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized-convex functions with applications, J. Funct. Spaces, 2021 (2021), 6631474. https://doi.org/10.1155/2021/6631474 doi: 10.1155/2021/6631474 |
[23] | M. J. Vivas-Cortez, A. Kashuri, R. Liko, J. E. Hernández, Quantum trapezium-type inequalities using generalized $\phi$-convex functions, Axioms, 9 (2020), 12. https://doi.org/10.3390/axioms9010012 doi: 10.3390/axioms9010012 |
[24] | M. A. Khan, N. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a green function, Adv. Differ. Equ., 2020 (2020), 99. https://doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3 |
[25] | S. Asawasamrit, C. Sudprasert, S. K. Ntouyas, J. Tariboon, Some results on quantum Hahn integral inequalities, J. Inequal. Appl., 2019 (2019), 154. https://doi.org/10.1186/s13660-019-2101-z doi: 10.1186/s13660-019-2101-z |
[26] | S. Chasreechai, M. A. Ali, M. A. Ashraf, T. Sitthiwirattham, S. Etemad, M. De la Sen, et al., On new estimates of $q$-Hermite-Hadamard inequalities with applications in quantum calculus, Axioms, 12 (2023), 49. https://doi.org/10.3390/axioms12010049 doi: 10.3390/axioms12010049 |
[27] | A. M. C. B. da Cruz, N. Martins, The $q$-symmetric variational calculus, Comput. Math. Appl., 64 (2012), 2241–2250. https://doi.org/10.1016/j.camwa.2012.01.076 doi: 10.1016/j.camwa.2012.01.076 |
[28] | A. Lavagno, G. Gervino, Quantum mechanics in $q$-deformed calculus, J. Phys.: Conf. Ser., 174 (2009), 012071. https://doi.org/10.1088/1742-6596/174/1/012071 doi: 10.1088/1742-6596/174/1/012071 |
[29] | A. Nosheen, S. Ijaz, K. A. Khan, K. M. Awan, M. A. Albahar, M. Thanoon, Some $q$-symmetric integral inequalities involving $s$-convex functions, Symmetry, 15 (2023), 1169. https://doi.org/10.3390/sym15061169 doi: 10.3390/sym15061169 |
[30] | M. H. Annaby, A. E. Hamza, K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154 (2012), 133–153. https://doi.org/10.1007/s10957-012-9987-7 doi: 10.1007/s10957-012-9987-7 |
[31] | J. L. Cardoso, E. M. Shehata, Hermite-Hadamard inequalities for quantum integrals: A unified approach, Appl. Math. Comput., 463 (2024), 128345. https://doi.org/10.1016/j.amc.2023.128345 doi: 10.1016/j.amc.2023.128345 |
[32] | J. Hadamard, $\acute{E}$tude sur les propri$\acute{e}$t$\acute{e}$s des fonctions enti$\grave{e}$res et en particulier d'une fonction consid$\acute{e}$r$\acute{e}$e par Riemann, J. Math. Pures Appl., 58 (1893), 171–216. |