In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard ($ H.H $) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of $ H.H $ type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
Citation: Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol. Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus[J]. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625
In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard ($ H.H $) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of $ H.H $ type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.
[1] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, 2 Eds., Springer, 2018. |
[2] | T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos Soliton. Fract., 163 (2022), 112602. https://doi.org/10.1016/j.chaos.2022.112602 doi: 10.1016/j.chaos.2022.112602 |
[3] | P. M. Guzmán, J. E. N. Valdés, M. V. Cortez, A new generalized derivative and related properties, Appl. Math., 18 (2024), 923–932. https://doi:10.18576/amis/180501 doi: 10.18576/amis/180501 |
[4] | J. E. N. Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne’s thread or Charlotte’s Spiderweb? Adv. Math. Model. Appl., 5 (2020). |
[5] | S. Karamardian, The nonlinear complementarity problem with applications, Part 2, J. Optimiz. Theory App., 4 (1969), 167–181. https://doi.org/10.1007/BF00930577 doi: 10.1007/BF00930577 |
[6] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl., 7 (1966), 72–75. |
[7] | G. H. Lin, M. Fukushima, Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optimiz. Theory App., 118 (2003), 67–80. http://dx.doi.org/10.1023/A:1024787424532 doi: 10.1023/A:1024787424532 |
[8] | H. M. Srivastava, Z. H. Zhang, Y. D. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2011), 2709–2717. http://dx.doi.org/10.1016/j.mcm.2011.06.057 doi: 10.1016/j.mcm.2011.06.057 |
[9] | S. K. Mishra, N. Sharma, On strongly generalized convex functions of higher order, Math. Inequal. Appl., 22 (2019), 111–121. https://dx.doi.org/10.7153/mia-2019-22-08 doi: 10.7153/mia-2019-22-08 |
[10] | M. A. Noor, K. I. Noor, Strongly exponentially convex functions, UPB Sci. Bull., 81 (2019), 75–84. |
[11] | M. A. Noor, K. I. Noor, Strongly log-convex functions, Inform. Sci. Lett., 10 (2021), 33–38. |
[12] | N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequations Math., 80 (2010), 193–199. http://dx.doi.org/10.1007/s00010-010-0043-0 doi: 10.1007/s00010-010-0043-0 |
[13] | M. Grossman, R. Katz, Non-Newtonian calculus, Pigeon Cove: Lee Press, 1972. |
[14] | A. E. Bashirov, E. M. Kurpinar, A. $\ddot{O}$zyapici, Multiplicative calculus and applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081 |
[15] | A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. Appl. Eng. Math., 1 (2011), 75–85. |
[16] | M. A. Ali, M. Abbas, A. A. Zafer, On some Hermite-Hadamard integral inequalities in multiplicative calculus, J. Inequal. Spec. Funct., 10 (2019), 111–122. |
[17] | S. $\ddot{O}$zcan, S. I. Butt, Hermite-Hadamard type inequalities for multiplicatively harmonic convex functions, J. Inequal. Appl., 2023, 120. http://dx.doi.org/10.1186/s13660-023-03020-1 |
[18] | T. S. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582 |
[19] | B. Meftah, A. Lakhdari, S. Wedad, C. D. Benchettah, Companion of Ostrowski inequality for multiplicatively convex functions, Sahand Commun. Math. A., 21 (2024), 289–304. http://dx.doi.org/10.22130/scma.2023.2002136.1324 doi: 10.22130/scma.2023.2002136.1324 |
[20] | Y. Peng, T. S. Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions, Filomat, 37 (2023), 9497–9509.} http://dx.doi.org/10.2298/FIL2328497P doi: 10.2298/FIL2328497P |
[21] | T. S. Du, Y. Long, The multi-parameterized integral inequalities for multiplicative Riemann-Liouville fractional integrals, J. Math. Anal. Appl., 541 (2025), 128692.} http://dx.doi.org/10.1016/j.jmaa.2024.128692 doi: 10.1016/j.jmaa.2024.128692 |
[22] | A. E. Bashirov, E. Kurpinar, Y. Tandogdu, A. $\ddot{O}$zyapici, On modeling with multiplicative differential equations, Appl. Math., 26 (2011), 425–438. http://dx.doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6 |
[23] | D. Khan, S. I. Butt, Y. Seol, Analysis of $(P, m)$-superquadratic function and related fractional integral inequalities with applications, J. Inequal. Appl., 2024, 137. http://dx.doi.org/10.1186/s13660-024-03218-x |
[24] | J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[25] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science direct working paper, RGMIA Monographs, Victoria University, 2000. Available from: https://ssrn.com/abstract=3158351. |
[26] | M. A. Ali, H. Budak, M. Z. Sarikaya, Z. Zhang, Ostrowski and Simpson type inequalities for multiplicative integrals, Proyecciones, 40 (2021), 743–763. http://dx.doi.org/10.22199/issn.0717-6279-4136 doi: 10.22199/issn.0717-6279-4136 |