Research article Special Issues

Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus

  • Received: 24 September 2024 Revised: 13 November 2024 Accepted: 22 November 2024 Published: 03 December 2024
  • MSC : 26D10, 26D15, 26E60, 90C23

  • In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard ($ H.H $) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of $ H.H $ type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.

    Citation: Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol. Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus[J]. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625

    Related Papers:

  • In this paper, we take into account the notion of strongly multiplicative convex function and derive integral inequalities of Hermite-Hadamard ($ H.H $) type for such a function in the frame of multiplicative calculus. We also develop integral inequalities of $ H.H $ type for product and quotient of strongly multiplicative convex and strongly multiplicative concave functions via multiplicative calculus. All the results of the theorems are verified graphically by taking into account some reasonable examples. Additionally, we establish the inequalities of the Milne type for strongly multiplicative convex functions.



    加载中


    [1] C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, 2 Eds., Springer, 2018.
    [2] T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos Soliton. Fract., 163 (2022), 112602. https://doi.org/10.1016/j.chaos.2022.112602 doi: 10.1016/j.chaos.2022.112602
    [3] P. M. Guzmán, J. E. N. Valdés, M. V. Cortez, A new generalized derivative and related properties, Appl. Math., 18 (2024), 923–932. https://doi:10.18576/amis/180501 doi: 10.18576/amis/180501
    [4] J. E. N. Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne’s thread or Charlotte’s Spiderweb? Adv. Math. Model. Appl., 5 (2020).
    [5] S. Karamardian, The nonlinear complementarity problem with applications, Part 2, J. Optimiz. Theory App., 4 (1969), 167–181. https://doi.org/10.1007/BF00930577 doi: 10.1007/BF00930577
    [6] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl., 7 (1966), 72–75.
    [7] G. H. Lin, M. Fukushima, Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optimiz. Theory App., 118 (2003), 67–80. http://dx.doi.org/10.1023/A:1024787424532 doi: 10.1023/A:1024787424532
    [8] H. M. Srivastava, Z. H. Zhang, Y. D. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2011), 2709–2717. http://dx.doi.org/10.1016/j.mcm.2011.06.057 doi: 10.1016/j.mcm.2011.06.057
    [9] S. K. Mishra, N. Sharma, On strongly generalized convex functions of higher order, Math. Inequal. Appl., 22 (2019), 111–121. https://dx.doi.org/10.7153/mia-2019-22-08 doi: 10.7153/mia-2019-22-08
    [10] M. A. Noor, K. I. Noor, Strongly exponentially convex functions, UPB Sci. Bull., 81 (2019), 75–84.
    [11] M. A. Noor, K. I. Noor, Strongly log-convex functions, Inform. Sci. Lett., 10 (2021), 33–38.
    [12] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequations Math., 80 (2010), 193–199. http://dx.doi.org/10.1007/s00010-010-0043-0 doi: 10.1007/s00010-010-0043-0
    [13] M. Grossman, R. Katz, Non-Newtonian calculus, Pigeon Cove: Lee Press, 1972.
    [14] A. E. Bashirov, E. M. Kurpinar, A. $\ddot{O}$zyapici, Multiplicative calculus and applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
    [15] A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. Appl. Eng. Math., 1 (2011), 75–85.
    [16] M. A. Ali, M. Abbas, A. A. Zafer, On some Hermite-Hadamard integral inequalities in multiplicative calculus, J. Inequal. Spec. Funct., 10 (2019), 111–122.
    [17] S. $\ddot{O}$zcan, S. I. Butt, Hermite-Hadamard type inequalities for multiplicatively harmonic convex functions, J. Inequal. Appl., 2023, 120. http://dx.doi.org/10.1186/s13660-023-03020-1
    [18] T. S. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582
    [19] B. Meftah, A. Lakhdari, S. Wedad, C. D. Benchettah, Companion of Ostrowski inequality for multiplicatively convex functions, Sahand Commun. Math. A., 21 (2024), 289–304. http://dx.doi.org/10.22130/scma.2023.2002136.1324 doi: 10.22130/scma.2023.2002136.1324
    [20] Y. Peng, T. S. Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions, Filomat, 37 (2023), 9497–9509.} http://dx.doi.org/10.2298/FIL2328497P doi: 10.2298/FIL2328497P
    [21] T. S. Du, Y. Long, The multi-parameterized integral inequalities for multiplicative Riemann-Liouville fractional integrals, J. Math. Anal. Appl., 541 (2025), 128692.} http://dx.doi.org/10.1016/j.jmaa.2024.128692 doi: 10.1016/j.jmaa.2024.128692
    [22] A. E. Bashirov, E. Kurpinar, Y. Tandogdu, A. $\ddot{O}$zyapici, On modeling with multiplicative differential equations, Appl. Math., 26 (2011), 425–438. http://dx.doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6
    [23] D. Khan, S. I. Butt, Y. Seol, Analysis of $(P, m)$-superquadratic function and related fractional integral inequalities with applications, J. Inequal. Appl., 2024, 137. http://dx.doi.org/10.1186/s13660-024-03218-x
    [24] J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215.
    [25] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science direct working paper, RGMIA Monographs, Victoria University, 2000. Available from: https://ssrn.com/abstract=3158351.
    [26] M. A. Ali, H. Budak, M. Z. Sarikaya, Z. Zhang, Ostrowski and Simpson type inequalities for multiplicative integrals, Proyecciones, 40 (2021), 743–763. http://dx.doi.org/10.22199/issn.0717-6279-4136 doi: 10.22199/issn.0717-6279-4136
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog