The structure of a finite chain ring has already been described by Wirt in 1972 and others later. The purpose of this article is to describe another structure of a finite chain ring as a ring of square matrices over Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring.
Citation: Yousef Alkhamees, Badr Alhajouj. Structure of a chain ring as a ring of matrices over a Galois ring[J]. AIMS Mathematics, 2022, 7(9): 15824-15833. doi: 10.3934/math.2022866
The structure of a finite chain ring has already been described by Wirt in 1972 and others later. The purpose of this article is to describe another structure of a finite chain ring as a ring of square matrices over Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring.
[1] | Y. Alkhamees, S. Singh, H. Alolayan, A representation theorem for chain rings, Colloq. Math., 96 (2003), 103–119. https://doi.org/10.4064/cm96-1-10 doi: 10.4064/cm96-1-10 |
[2] | Y. Alkhamees, The enumeration of finite principal completely primary rings, Abh. Math. Sem. Hamburg, 51 (1981), 226–231. |
[3] | B. J. Chathely, Hadamard matrix and its application in coding theory and combinatorial design theory, Int. J. Math. Trend. Technol., 59 (2018), 218–227. |
[4] | W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc., 33 (1972), 25–27. https://doi.org/10.1090/S0002-9939-1972-0294411-8 doi: 10.1090/S0002-9939-1972-0294411-8 |
[5] | W. E. Clark, D. A. Drake, Finite chain rings, Abh. Math. Sem. Hamburg, 39 (1973), 147–153. https://doi.org/10.1007/BF02992827 doi: 10.1007/BF02992827 |
[6] | J. L. Fisher, Finite principal rings, Can. Math. Bull., 19 (1976), 277–283. |
[7] | M. Greferath, S. E. Schmidt, Linear codes and rings of matrices, Springer, Berlin, 2003,160–169. |
[8] | I. N. Herstein, Topics in algebra, 2 Eds., John Wiley & Sons, New York, 1975. |
[9] | W. Klingenberg, Projective and affine Ebene mit Nachbarelementen, Math. Z., 60 (1960), 384–406. |
[10] | W. Krull, Algebraische theorie der ringe Ⅱ, Math. Ann., 91 (1924), 1–46. https://doi.org/10.1007/BF01498378 doi: 10.1007/BF01498378 |
[11] | W. Krull, Ideal theorie, 2 Eds., Spring Verlag, Berlin, New York, 1968. |
[12] | X. Liu, H. Liu, LCD codes over finite chain rings, Finite Fields Th. App., 34 (2015), 1–19. https://doi.org/10.1016/j.ffa.2015.01.004 doi: 10.1016/j.ffa.2015.01.004 |
[13] | B. R. Macdonald, Finite rings with identity, Marcel Dekker, New York, 1974. |
[14] | A. A. Nechaev, Finite rings of principal ideals, Mat. Sb., 91 (1973), 350–366. |
[15] | F. P. Preparata, A class of optimum nonlinear double-error-correcting codes, Inform. Control, 13 (1968), 378–400. https://doi.org/10.1016/S0019-9958(68)90874-7 doi: 10.1016/S0019-9958(68)90874-7 |
[16] | A. Stakhov, A new coding theory based on matrix approach, The Harmony of Mathematics, Series of Knots and Every Thing, World Scientific Publishing Co. Pte. Ltd., Singapore, 22 (2009), 569–614. |
[17] | B. R. Wirt, Finite non-commutative local rings, Ph. D. Thesis, University of Oklahoma, 1972. |
[18] | C. P. Xing, Coding theory: A first course, Cambridge University Press, 2004. |