Research article

Structure of a chain ring as a ring of matrices over a Galois ring

  • Received: 16 February 2022 Revised: 24 May 2022 Accepted: 12 June 2022 Published: 27 June 2022
  • MSC : 16L30, 16P20, 16P30

  • The structure of a finite chain ring has already been described by Wirt in 1972 and others later. The purpose of this article is to describe another structure of a finite chain ring as a ring of square matrices over Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring.

    Citation: Yousef Alkhamees, Badr Alhajouj. Structure of a chain ring as a ring of matrices over a Galois ring[J]. AIMS Mathematics, 2022, 7(9): 15824-15833. doi: 10.3934/math.2022866

    Related Papers:

  • The structure of a finite chain ring has already been described by Wirt in 1972 and others later. The purpose of this article is to describe another structure of a finite chain ring as a ring of square matrices over Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring.



    加载中


    [1] Y. Alkhamees, S. Singh, H. Alolayan, A representation theorem for chain rings, Colloq. Math., 96 (2003), 103–119. https://doi.org/10.4064/cm96-1-10 doi: 10.4064/cm96-1-10
    [2] Y. Alkhamees, The enumeration of finite principal completely primary rings, Abh. Math. Sem. Hamburg, 51 (1981), 226–231.
    [3] B. J. Chathely, Hadamard matrix and its application in coding theory and combinatorial design theory, Int. J. Math. Trend. Technol., 59 (2018), 218–227.
    [4] W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc., 33 (1972), 25–27. https://doi.org/10.1090/S0002-9939-1972-0294411-8 doi: 10.1090/S0002-9939-1972-0294411-8
    [5] W. E. Clark, D. A. Drake, Finite chain rings, Abh. Math. Sem. Hamburg, 39 (1973), 147–153. https://doi.org/10.1007/BF02992827 doi: 10.1007/BF02992827
    [6] J. L. Fisher, Finite principal rings, Can. Math. Bull., 19 (1976), 277–283.
    [7] M. Greferath, S. E. Schmidt, Linear codes and rings of matrices, Springer, Berlin, 2003,160–169.
    [8] I. N. Herstein, Topics in algebra, 2 Eds., John Wiley & Sons, New York, 1975.
    [9] W. Klingenberg, Projective and affine Ebene mit Nachbarelementen, Math. Z., 60 (1960), 384–406.
    [10] W. Krull, Algebraische theorie der ringe Ⅱ, Math. Ann., 91 (1924), 1–46. https://doi.org/10.1007/BF01498378 doi: 10.1007/BF01498378
    [11] W. Krull, Ideal theorie, 2 Eds., Spring Verlag, Berlin, New York, 1968.
    [12] X. Liu, H. Liu, LCD codes over finite chain rings, Finite Fields Th. App., 34 (2015), 1–19. https://doi.org/10.1016/j.ffa.2015.01.004 doi: 10.1016/j.ffa.2015.01.004
    [13] B. R. Macdonald, Finite rings with identity, Marcel Dekker, New York, 1974.
    [14] A. A. Nechaev, Finite rings of principal ideals, Mat. Sb., 91 (1973), 350–366.
    [15] F. P. Preparata, A class of optimum nonlinear double-error-correcting codes, Inform. Control, 13 (1968), 378–400. https://doi.org/10.1016/S0019-9958(68)90874-7 doi: 10.1016/S0019-9958(68)90874-7
    [16] A. Stakhov, A new coding theory based on matrix approach, The Harmony of Mathematics, Series of Knots and Every Thing, World Scientific Publishing Co. Pte. Ltd., Singapore, 22 (2009), 569–614.
    [17] B. R. Wirt, Finite non-commutative local rings, Ph. D. Thesis, University of Oklahoma, 1972.
    [18] C. P. Xing, Coding theory: A first course, Cambridge University Press, 2004.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(99) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog