Citation: Erdal Bas, Bahar Acay, Ramazan Ozarslan. The price adjustment equation with different types of conformable derivatives in market equilibrium[J]. AIMS Mathematics, 2019, 4(3): 805-820. doi: 10.3934/math.2019.3.805
[1] | A. Takayama, Mathematical economics, Cambridge University Press, 1985. |
[2] | A. C. Chiang, Fundamental methods of mathematical economics, 1984. |
[3] | R. K. Nagle , E. B. Staff, A. D. Snider, Fundamentals Differential Equations, Pearson, 2008. |
[4] | R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[5] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[6] | T. Abdeljawad, J. Alzabut, F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives, Adv. Differ. Equ-Ny, 2017 (2017), 321. |
[7] | T. Abdeljawad, R. P. Agarwal, J. Alzabut, et al. Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives, J. Inequal. Appl., 2018 (2018), 143. |
[8] | F. M. Alharbi, D. Baleanu, A. Ebaid, Physical properties of the projectile motion using the conformable derivative, Chinese J. Phys., 58 (2019), 18-28. doi: 10.1016/j.cjph.2018.12.010 |
[9] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[10] | M. Ilie, J. Biazar, Z. Ayati, General solution of Bernoulli and Riccati fractional differential equations based on conformable fractional derivative, International Journal of Applied Mathematical Research, 6 (2017), 49-51. doi: 10.14419/ijamr.v6i2.7014 |
[11] | E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 116 (2018), 121-125. doi: 10.1016/j.chaos.2018.09.019 |
[12] | E. Bas, R. Ozarslan, D. Baleanu, et al. Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equ-Ny, 2018 (2018), 350. |
[13] | E. Bas, The Inverse Nodal problem for the fractional diffusion equation, Acta Sci-Technol, 37 (2015), 251-257. doi: 10.4025/actascitechnol.v37i2.17273 |
[14] | E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos, 29 (2019), 023110. |
[15] | A. Yusuf, S. Qureshi, M. Inc, et al. Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel, Chaos, 28 (2018), 123121. |
[16] | S. Qureshi, A. Yusuf, A. A. Shaikh, et al. Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143. |
[17] | M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017), 1-7. |
[18] | S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to Atangana-Baleanu, Chaos Soliton. Fract., 122 (2019), 111-118. doi: 10.1016/j.chaos.2019.03.020 |
[19] | S. Qureshi, A. Yusuf, Fractional derivatives applied to MSEIR problems: Comparative study with real world data, The European Physical Journal Plus, 134 (2019), 171. |
[20] | S. Sakarya, M. Yavuz, A. D. Karaoglan, et al. Stock market index prediction with neural network during financial crises: a review on Bist-100, Financial Risk and Management Reviews, 1 (2015), 53-67. doi: 10.18488/journal.89/2015.1.2/89.2.53.67 |
[21] | M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8 (2017), 1-7. |
[22] | A. Atangana, D. Baleanu, A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal, Open Phys., 14 (2016), 145-149. |
[23] | A. Atangana, A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women, Neural Comput. Appl., 26 (2015), 1895-1903. doi: 10.1007/s00521-015-1860-9 |
[24] | U. N. Katugampola, A new fractional derivative with classical properties, arXiv preprint arXiv:1410.6535, 2014. |
[25] | J. V. D. C. Sousa, E. C. de Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties, Int. J. Anal. Appl., 16 (2018), 83-96. |