Citation: A. M. A. El-Sayed, Sh. M. Al-Issa. Monotonic solutions for a quadratic integral equation of fractional order[J]. AIMS Mathematics, 2019, 4(3): 821-830. doi: 10.3934/math.2019.3.821
[1] | J. A. Alamo and J. Rodriguez, Operational calculus for modified ErdélyiKober operators, Serdica Bulgaricae Math. Publ., 20 (1994), 351-363. |
[2] | Sh. M. Al-Issa and A. M. A. El-Sayed, Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Commentat. Math., 49 (2009), 171-177. |
[3] | J. Appell and E. De Pascale, Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili, Boll. Un. Mat. Ital., 6 (1984), 497-515. |
[4] | J. Banaś, On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal., 12 (1988), 777-784. doi: 10.1016/0362-546X(88)90038-7 |
[5] | J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Aust. Math. Soc., 46 (1989), 61-68. |
[6] | J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 47 (2004), 271-279. doi: 10.1016/S0898-1221(04)90024-7 |
[7] | J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 332 (2007), 1371-1379. doi: 10.1016/j.jmaa.2006.11.008 |
[8] | J. Banaś and K.Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA.60 (1980) |
[9] | J. Banaś, M. Lecko and W. G. El-Sayed, Existence theorems of some quadratic integral equation, J. Math. Anal. Appl., 222 (1998), 276-285. doi: 10.1006/jmaa.1998.5941 |
[10] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[11] | F. S. De Blasi, On a property of the unit sphere in a Banach space, Bull. math. Soc. Sci. Math. R. S. Roumanie, 21 (1977), 259-262. |
[12] | A. M. A. El-Sayed and H. H. G. Hashem, Integrable and continuous solutions of nonlinear quadratic integral equation, Electron. J. Qual. Theory Differ. Equations, 25 (2008), 1-10. |
[13] | A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., 33 (2010), 27-34. |
[14] | A. M. A. El-Sayed and Sh. M. Al-Issa, Global integrable solution for a nonlinear functional integral inclusion, SRX Mathematics, 2010 (2010). |
[15] | A. M. A. El-Sayed and Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., 18 (2019). |
[16] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland, 204 (2006). |
[17] | A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions, Research Notes in Mathematics, 31 (1979). |
[18] | K. S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiely and Sons Inc, (1993). |
[19] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego-New York-london, (1999). |
[20] | I. Podlubny and A. M. A. EL-Sayed, On two defintions of fractional calculus, Preprint UEF, Solvak Academy of science-Institute of Experimental Phys, (1996), 03-69. |
[21] | B. Ross and K. S. Miller, An introduction to the fractional calculus and fractional differential equations, John Wiley, New York, (1993). |
[22] | S. G. Samko, A. A. Kilbasa and O. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i tekhnika, Minsk, (1987). |
[23] | P. P. Zabrejko, A. I. Koshelev, M. A. Krasnoselskii, et al. Integral Equations, Noordhoff, Leyden, (1975). |