Research article Topical Sections

Mathematical study of a nonlinear neuron model with active dendrites

  • Received: 03 April 2019 Accepted: 08 July 2019 Published: 18 July 2019
  • In this work, we have studied an extended version of the cable equation that includes both active and passive membrane properties, under the so-called sealed-end boundary condition. We have thus proved the existence and uniqueness of the weak solution, and defined a novel mathematical form of the somatic cable equation. In particular, we have manipulated the equation set to demonstrate that the diffusion term in the somatic equation is equivalent to the first-order space derivative of the membrane potential in the proximal dendrites. Our conclusion therefore clues how the somatic potential depends on the dynamic of the proximal dendritic segments, and provides the basis for the morphological reduction of neurons without any significant loss of computational properties.

    Citation: Francesco Cavarretta, Giovanni Naldi. Mathematical study of a nonlinear neuron model with active dendrites[J]. AIMS Mathematics, 2019, 4(3): 831-846. doi: 10.3934/math.2019.3.831

    Related Papers:

  • In this work, we have studied an extended version of the cable equation that includes both active and passive membrane properties, under the so-called sealed-end boundary condition. We have thus proved the existence and uniqueness of the weak solution, and defined a novel mathematical form of the somatic cable equation. In particular, we have manipulated the equation set to demonstrate that the diffusion term in the somatic equation is equivalent to the first-order space derivative of the membrane potential in the proximal dendrites. Our conclusion therefore clues how the somatic potential depends on the dynamic of the proximal dendritic segments, and provides the basis for the morphological reduction of neurons without any significant loss of computational properties.


    加载中


    [1] G. M. Shepherd, The Synaptic Organization of the Brain 5th Edition, Oxford Press, 2004.
    [2] A. L. Hodgkin and A. F. Huxley, A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Physiol., (1952), 500-544.
    [3] P. Poirazi, T. Brannon, B. W. Mel, Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell, Neuron, 37 (2003), 977-987. doi: 10.1016/S0896-6273(03)00148-X
    [4] P. Poirazi, T. Brannon, B. W. Mel, Pyramidal neuron as two-layer neural network, Neuron, 37 (2003), 989-999. doi: 10.1016/S0896-6273(03)00149-1
    [5] C. Koch and I. Segev, Methods in Neuronal Modeling: From Ions to Networks, 2 eds. Cambridge: MIT Press, 1998.
    [6] E. R. de Moraes, C. Kushmerick, L. A. Naves, Morphological and functional diversity of first-order somatosensory neurons, Biophysical reviews, 9 (2017), 847-856. doi: 10.1007/s12551-017-0321-3
    [7] P. Fromherz, C. O. Müller, Cable properties of a straight neurite of a leech neuron probed by a voltage-sensitive dye, P. Natl. Acad. Sci. USA, 91 (1994), 4604-4608. doi: 10.1073/pnas.91.10.4604
    [8] B. J. Zandt, M. L. Veruki, E. Hartveit, Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron, Brain Struct. Funct., 223 (2018), 3383-3410. doi: 10.1007/s00429-018-1696-z
    [9] R. R. Llinas, I of the Vortex: From Neurons to Self, MIT Press, 2002.
    [10] R. R. Llinas, The Workings of the Brain: Development, Memory, and Perception (Readings from Scientific American), MIT Press, 1989.
    [11] H. Bokil, N. Laaris, K. Blinder, et al. Ephaptic interactions in the mammalian olfactory system, J. Neurosci., 21 (2001), RC173.
    [12] C. A. Anastassiou, R. Perin, H. Markram, et al. Ephaptic coupling of cortical neurons, Nat. Neurosci., 14 (2011), 217-223. doi: 10.1038/nn.2727
    [13] M. Martinez-Banaclochar, Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience, 370 (2018), 37-45.
    [14] J. G. Jefferys, P. Jiruska, M. de Curtis, et al. Limbic Network Synchronization and Temporal Lobe Epilepsy, National Center for Biotechnology Information (US), 2012.
    [15] A. A. Fingelkurts, A. A. Fingelkurts, S. Bagnato, et al. The value of spontaneous EEG oscillations in distinguishing patients in vegetative and minimally conscious states, Supplements to Clinical neurophysiology, 62 (2013), 81-99. doi: 10.1016/B978-0-7020-5307-8.00005-3
    [16] K. Mori, H. Manabe, K. Narikiyo, et al. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex, Frontiers in psychology, 4 (2013), 743.
    [17] L. Lamberti, Solutions to the Hodgkin-Huxley equations, Appl. Math. Comput., (1986), 43-70.
    [18] M. Mascagni, An initial-boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., (1989), 213-227.
    [19] M. Mascagni, The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve conduction, SIAM J. Numer. Anal., (1990), 941-962.
    [20] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer-Verlag, 2011.
    [21] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Mathématiques, Vol. 1, Dunod, Paris, 1968.
    [22] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 2010.
    [23] J. D. Evans, Analysis of a multiple equivalent cylinder model with generalized taper, Mathematical Medicine and Biology: A Journal of the IMA, (2000), 347-377.
    [24] W. Rall, Perspectives on neuron modeling, In: M. D. Binder and L. M. Mendell, The Segmental Motor System, Oxford: Oxford University Press, 1990.
    [25] M. Ohme and A. Schierwagen, A reduced model for dendritic trees with active membrane, In: C. von der Malsburg, et al. Artificial Neural Networks - ICANN96, LNCS vol. 1112, Berlin: Springer Verlag, 1996.
    [26] H. C. Tuckwell, Introduction to Theoretical Neurobiology, Volume 1. Linear Cable Theory and Dendritic Structure, New York: Cambridge University Press, 1988.
    [27] P. Colli, Mathematical study of a nonlinear neuron multi-dendritic model, Q. Appl. Math., 52 (1994), 689-706. doi: 10.1090/qam/1306044
    [28] V. Comincioli, D. Funaro, A. Torelli, et al. A mathematical model of potential spreading along neuron dendrites of cerebellar granule cells, Appl. Math. Comput.,59 (1993), 73-87.
    [29] M. London and M. Häusser,Dendritic Computation, Annu. Rev. Neurosci., 28 (2005), 503-532. doi: 10.1146/annurev.neuro.28.061604.135703
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5255) PDF downloads(1161) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog