Citation: Francesco Cavarretta, Giovanni Naldi. Mathematical study of a nonlinear neuron model with active dendrites[J]. AIMS Mathematics, 2019, 4(3): 831-846. doi: 10.3934/math.2019.3.831
[1] | G. M. Shepherd, The Synaptic Organization of the Brain 5th Edition, Oxford Press, 2004. |
[2] | A. L. Hodgkin and A. F. Huxley, A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Physiol., (1952), 500-544. |
[3] | P. Poirazi, T. Brannon, B. W. Mel, Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell, Neuron, 37 (2003), 977-987. doi: 10.1016/S0896-6273(03)00148-X |
[4] | P. Poirazi, T. Brannon, B. W. Mel, Pyramidal neuron as two-layer neural network, Neuron, 37 (2003), 989-999. doi: 10.1016/S0896-6273(03)00149-1 |
[5] | C. Koch and I. Segev, Methods in Neuronal Modeling: From Ions to Networks, 2 eds. Cambridge: MIT Press, 1998. |
[6] | E. R. de Moraes, C. Kushmerick, L. A. Naves, Morphological and functional diversity of first-order somatosensory neurons, Biophysical reviews, 9 (2017), 847-856. doi: 10.1007/s12551-017-0321-3 |
[7] | P. Fromherz, C. O. Müller, Cable properties of a straight neurite of a leech neuron probed by a voltage-sensitive dye, P. Natl. Acad. Sci. USA, 91 (1994), 4604-4608. doi: 10.1073/pnas.91.10.4604 |
[8] | B. J. Zandt, M. L. Veruki, E. Hartveit, Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron, Brain Struct. Funct., 223 (2018), 3383-3410. doi: 10.1007/s00429-018-1696-z |
[9] | R. R. Llinas, I of the Vortex: From Neurons to Self, MIT Press, 2002. |
[10] | R. R. Llinas, The Workings of the Brain: Development, Memory, and Perception (Readings from Scientific American), MIT Press, 1989. |
[11] | H. Bokil, N. Laaris, K. Blinder, et al. Ephaptic interactions in the mammalian olfactory system, J. Neurosci., 21 (2001), RC173. |
[12] | C. A. Anastassiou, R. Perin, H. Markram, et al. Ephaptic coupling of cortical neurons, Nat. Neurosci., 14 (2011), 217-223. doi: 10.1038/nn.2727 |
[13] | M. Martinez-Banaclochar, Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience, 370 (2018), 37-45. |
[14] | J. G. Jefferys, P. Jiruska, M. de Curtis, et al. Limbic Network Synchronization and Temporal Lobe Epilepsy, National Center for Biotechnology Information (US), 2012. |
[15] | A. A. Fingelkurts, A. A. Fingelkurts, S. Bagnato, et al. The value of spontaneous EEG oscillations in distinguishing patients in vegetative and minimally conscious states, Supplements to Clinical neurophysiology, 62 (2013), 81-99. doi: 10.1016/B978-0-7020-5307-8.00005-3 |
[16] | K. Mori, H. Manabe, K. Narikiyo, et al. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex, Frontiers in psychology, 4 (2013), 743. |
[17] | L. Lamberti, Solutions to the Hodgkin-Huxley equations, Appl. Math. Comput., (1986), 43-70. |
[18] | M. Mascagni, An initial-boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., (1989), 213-227. |
[19] | M. Mascagni, The backward Euler method for numerical solution of the Hodgkin-Huxley equations of nerve conduction, SIAM J. Numer. Anal., (1990), 941-962. |
[20] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer-Verlag, 2011. |
[21] | J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Mathématiques, Vol. 1, Dunod, Paris, 1968. |
[22] | L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 2010. |
[23] | J. D. Evans, Analysis of a multiple equivalent cylinder model with generalized taper, Mathematical Medicine and Biology: A Journal of the IMA, (2000), 347-377. |
[24] | W. Rall, Perspectives on neuron modeling, In: M. D. Binder and L. M. Mendell, The Segmental Motor System, Oxford: Oxford University Press, 1990. |
[25] | M. Ohme and A. Schierwagen, A reduced model for dendritic trees with active membrane, In: C. von der Malsburg, et al. Artificial Neural Networks - ICANN96, LNCS vol. 1112, Berlin: Springer Verlag, 1996. |
[26] | H. C. Tuckwell, Introduction to Theoretical Neurobiology, Volume 1. Linear Cable Theory and Dendritic Structure, New York: Cambridge University Press, 1988. |
[27] | P. Colli, Mathematical study of a nonlinear neuron multi-dendritic model, Q. Appl. Math., 52 (1994), 689-706. doi: 10.1090/qam/1306044 |
[28] | V. Comincioli, D. Funaro, A. Torelli, et al. A mathematical model of potential spreading along neuron dendrites of cerebellar granule cells, Appl. Math. Comput.,59 (1993), 73-87. |
[29] | M. London and M. Häusser,Dendritic Computation, Annu. Rev. Neurosci., 28 (2005), 503-532. doi: 10.1146/annurev.neuro.28.061604.135703 |