In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of time-fractional partial problems. We introduce a new theorem to explain the required substitutions of the proposed method. In addition, convergence analysis conditions of the method are given. Furthermore, some different illustrative examples of time-fractional partial differential equations and systems are discussed to show the applicability and simplicity of the new approach.
Citation: Ahmad Qazza, Rania Saadeh, Emad Salah. Solving fractional partial differential equations via a new scheme[J]. AIMS Mathematics, 2023, 8(3): 5318-5337. doi: 10.3934/math.2023267
In this paper, we introduce a new technique, called the direct power series method to solve several types of time-fractional partial differential equations and systems, in terms of the Caputo derivative. We illustrate the method with a simple algorithm that can be used to solve different types of time-fractional partial problems. We introduce a new theorem to explain the required substitutions of the proposed method. In addition, convergence analysis conditions of the method are given. Furthermore, some different illustrative examples of time-fractional partial differential equations and systems are discussed to show the applicability and simplicity of the new approach.
[1] | D. L. Powers, Boundary value problems: and partial differential equations, Academic Press, 2005. |
[2] | W. E. Schiesser, Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs, Boca Raton: CRC Press, 1993. |
[3] | A. D. Polyanin, V. F. Zaitsev, Handbook of nonlinear partial differential equations, Boca Raton: Chapman & Hall/CRC Press, 2004. |
[4] | S. A. Altaie, N. Anakira, A. Jameel, O. Ababneh, A. Qazza, A. K. Alomari, Homotopy analysis method analytical scheme for developing a solution to partial differential equations in fuzzy environment, Fractal Fract., 6 (2022), 419. https://doi.org/10.3390/fractalfract6080419 doi: 10.3390/fractalfract6080419 |
[5] | R. Edwan, R. Saadeh, S. Hadid, M. Al-Smadi, S. Momani, Solving time-space-fractional Cauchy problem with constant coefficients by finite-difference method, In: Computational mathematics and applications, Singapore: Springer, 2020, 25–46. |
[6] | J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5 |
[7] | A. S. Vander Vorst, R. J. M. Govaerts, Application of a variation-iteration method to inhomogeneously loaded waveguides, IEEE Trans. Microw. Theory Tech., 18 (1970), 468–475. https://doi.org/10.1109/TMTT.1970.1127270 doi: 10.1109/TMTT.1970.1127270 |
[8] | G. C. Wu, D. Baleanu, Variational iteration method for fractional calculus-a universal approach by Laplace transform, Adv. Differ. Equ., 2013 (2013), 18. |
[9] | A. M. A. El-Sayed, M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A, 359 (2006), 175–182. https://doi.org/10.1016/j.physleta.2006.06.024 doi: 10.1016/j.physleta.2006.06.024 |
[10] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |
[11] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, London: Imperial College Press, 2010. https://doi.org/10.1142/p926 |
[12] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[13] | P. Kumar, S. Qureshi, Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator, J. Appl. Math. Comput. Mech., 19 (2020), 57–66. https://doi.org/10.17512/jamcm.2020.1.05 doi: 10.17512/jamcm.2020.1.05 |
[14] | R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1490–1500. https://doi.org/10.1016/j.cnsns.2010.07.016 doi: 10.1016/j.cnsns.2010.07.016 |
[15] | A. A. Kilbas, H. H. Srivasfava, J. J. Trujillo, Theory and applications of fractional differential equation, In: North-Holland mathematics studies, 2006. |
[16] | A. El-Ajou, O. A. Arqub, M. Al-Smadi, A general form of the generalized Taylor's formula with some applications, Appl. Math. Comput., 256 (2015), 851–859. https://doi.org/10.1016/j.amc.2015.01.034 |
[17] | A. El-Ajou, O. A. Arqub, Z. Al Zhour, S. Momani, New results on fractional power series: Theories and applications, Entropy, 15 (2013), 5305–5323. https://doi.org/10.3390/e15125305 doi: 10.3390/e15125305 |
[18] | M. Alquran, H. M. Jaradat, M. I. Syam, Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method, Nonlinear Dynam., 90 (2017), 2525–2529. https://doi.org/10.1007/s11071-017-3820-7 doi: 10.1007/s11071-017-3820-7 |
[19] | H. M. Jaradat, S. Al-Shara, Q. J. Khan, M. Alquran, K. Al-Khaled, Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system using residual power series method, IAENG Int. J. Appl. Math., 46 (2016), 64–70. |
[20] | M. Modanli, S. T. Abdulazeez, A. M. Husien, A residual power series method for solving pseudo hyperbolic partial differential equations with nonlocal conditions, Numer. Methods Part. Differ. Equ., 37 (2021), 2235–2243. https://doi.org/10.1002/num.22683 doi: 10.1002/num.22683 |
[21] | Y. Zhang, A. Kumar, S. Kumar, D. Baleanu, X. J. Yang, Residual power series method for time-fractional Schrödinger equations, J. Nonlinear Sci. Appl., 9 (2016), 5821–5829. http://doi.org/10.22436/jnsa.009.11.10 doi: 10.22436/jnsa.009.11.10 |
[22] | O. A. Arqub, Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87–110. http://doi.org/10.3233/FI-2019-1795 doi: 10.3233/FI-2019-1795 |
[23] | O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiabilitym, J. Adv. Res. Appl. Math., 5 (2013), 31–52. https://doi.org/10.5373/JARAM.1447.051912 doi: 10.5373/JARAM.1447.051912 |
[24] | Z. Korpinar, M. Inc, E. Hınçal, D. Baleanu, Residual power series algorithm for fractional cancer tumor models, Alex. Eng. J., 59 (2020), 1405–1412. https://doi.org/10.1016/j.aej.2020.03.044 doi: 10.1016/j.aej.2020.03.044 |
[25] | A. Kumar, S. Kumar, M. Singh, Residual power series method for fractional Sharma-Tasso-Olever equation, Commun. Numer. Anal., 2016 (2016), 1–10. http://doi.org/10.5899/2016/cna-00235 doi: 10.5899/2016/cna-00235 |
[26] | M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667 |
[27] | M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems, Nonlinear Eng., 10 (2021), 282–292. https://doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022 |
[28] | J. Akter, M. A. Akbar, Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method, Results Phys., 5 (2015), 125–130. https://doi.org/10.1016/j.rinp.2015.01.008 doi: 10.1016/j.rinp.2015.01.008 |
[29] | A. Burqan, R. Saadeh, A. Qazza, S. Momani, ARA-residual power series method for solving partial fractional differential equations, Alex. Eng. J., 62 (2023), 47–62. https://doi.org/10.1016/j.aej.2022.07.022 doi: 10.1016/j.aej.2022.07.022 |
[30] | M. Thongmoon, S. Pusjuso, The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations, Nonlinear Anal. Hybrid Syst., 4 (2010), 425–431. https://doi.org/10.1016/j.nahs.2009.10.006 doi: 10.1016/j.nahs.2009.10.006 |
[31] | R. Saadeh, A. Qazza, A. Burqan, A new integral transform: ARA transform and its properties and applications, Symmetry, 12 (2020), 925. https://doi.org/10.3390/sym12060925 doi: 10.3390/sym12060925 |
[32] | A. Burqan, R. Saadeh, A. Qazza, A novel numerical approach in solving fractional neutral pantograph equations via the ARA integral transform, Symmetry, 14 (2022), 50. https://doi.org/10.3390/sym14010050 doi: 10.3390/sym14010050 |
[33] | R. Z. Saadeh, B. Ghazal, A new approach on transforms: Formable integral transform and its applications, Axioms, 10 (2021), 332. https://doi.org/10.3390/axioms10040332 doi: 10.3390/axioms10040332 |
[34] | R. Saadeh, A. Qazza, K. Amawi, A new approach using integral transform to solve cancer models, Fractal Fract., 6 (2022), 490. https://doi.org/10.3390/fractalfract6090490 doi: 10.3390/fractalfract6090490 |
[35] | B. Ghanbari, S. Kumar, R. Kumar, A study of behavior for immune and tumor cells in immune ogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fractals, 133 (2020), 109619. https://doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619 |
[36] | R. L. Magin, C. Ingo, L. Colon-Perez, W. Triplett, T. H. Mareci, Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Micropor. Mesopor. Mat., 178 (2013), 39–43. https://doi.org/10.1016/j.micromeso.2013.02.054 doi: 10.1016/j.micromeso.2013.02.054 |
[37] | R. Shah, H. Khan, D. Baleanu, P. Kumam, M. Arif, The analytical investigation of time-fractional multi-dimensional Navier-Stokes equation, Alex. Eng. J., 59 (2020), 2941–2956. https://doi.org/10.1016/j.aej.2020.03.029 doi: 10.1016/j.aej.2020.03.029 |
[38] | E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, New algorithm for solving nonlinear initial value problems, Axioms, 2022, In press. |
[39] | L. D. Zhao, Notes on "stability and chaos control of regularized Prabhakar fractional dynamical systems without and with delay", Math. Methods Appl. Sci., 42 (2019), 7320–7325. https://doi.org/10.1002/mma.5842 doi: 10.1002/mma.5842 |
[40] | L. D. Zhao, A note on "Cluster synchronization of fractional-order directed networks via intermittent pinning control", Phys. A, 561 (2021), 125150. https://doi.org/10.1016/j.physa.2020.125150 doi: 10.1016/j.physa.2020.125150 |
[41] | J. B. Hu, L. D. Zhao, G. P. Lu, S. B. Zhang, The stability and control of fractional nonlinear system with distributed time delay, Appl. Math. Model., 40 (2016), 3257–3263. https://doi.org/10.1016/j.apm.2015.10.021 doi: 10.1016/j.apm.2015.10.021 |