Research article Special Issues

Analysis of positivity results for discrete fractional operators by means of exponential kernels

  • Received: 02 March 2022 Revised: 22 June 2022 Accepted: 23 June 2022 Published: 27 June 2022
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • In this study, we consider positivity and other related concepts such as $ \alpha- $convexity and $ \alpha- $monotonicity for discrete fractional operators with exponential kernel. Namely, we consider discrete $ \Delta $ fractional operators in the Caputo sense and we apply efficient initial conditions to obtain our conclusions. Note positivity results are an important factor for obtaining the composite of double discrete fractional operators having different orders.

    Citation: Pshtiwan Othman Mohammed, Donal O'Regan, Aram Bahroz Brzo, Khadijah M. Abualnaja, Dumitru Baleanu. Analysis of positivity results for discrete fractional operators by means of exponential kernels[J]. AIMS Mathematics, 2022, 7(9): 15812-15823. doi: 10.3934/math.2022865

    Related Papers:

  • In this study, we consider positivity and other related concepts such as $ \alpha- $convexity and $ \alpha- $monotonicity for discrete fractional operators with exponential kernel. Namely, we consider discrete $ \Delta $ fractional operators in the Caputo sense and we apply efficient initial conditions to obtain our conclusions. Note positivity results are an important factor for obtaining the composite of double discrete fractional operators having different orders.



    加载中


    [1] C. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [2] F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [3] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [4] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. https://doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [5] C. Lizama, M. Murillo-Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math., 339 (2018), 356–366. https://doi.org/10.1016/j.cam.2017.07.027 doi: 10.1016/j.cam.2017.07.027
    [6] H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, Y. S. Hamed, Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations, Discrete Contin. Dyn. Syst., 15 (2021), 427–440. http://dx.doi.org/10.3934/dcdss.2021083 doi: 10.3934/dcdss.2021083
    [7] İlhane, E. Analysis of the spread of Hookworm infection with Caputo-Fabrizio fractional derivative, Turk. J. Sci., 7 (2022), 43–52.
    [8] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 25 (2022), 1270–1273. https://doi.org/10.1016/j.aml.2011.11.022 doi: 10.1016/j.aml.2011.11.022
    [9] S. Rezapour, A. Boulfoul, B. Tellab, M. E. Samei, S. Etemad, R. George, Fixed point theory and the Liouville-Caputo integro-differential FBVP with multiple nonlinear terms, J. Funct. Spaces, 2022 (2022), 6713533. https://doi.org/10.1155/2022/6713533 doi: 10.1155/2022/6713533
    [10] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
    [11] T. Abdeljawad, Q. M. Al-Mdallal, M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017), 4149320. https://doi.org/10.1155/2017/4149320 doi: 10.1155/2017/4149320
    [12] T. Abdeljawad, F. Jarad, A. Atangana, P. O. Mohammed, On a new type of fractional difference operators on h-step isolated time scales, J. Fract. Calc. Nonlinear Syst., 1 (2020), 46–74.
    [13] T. Abdeljawad, Different type kernel $h$-fractional differences and their fractional $h$-sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [14] R. A. C. Ferreira, D. F. M. Torres, Fractional $h$-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121.
    [15] C. R. Chen, M. Bohner, B. G. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Meth. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [16] G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [17] F. Atici, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9.
    [18] B. Ghanbari, On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators, Adv. Differ. Equ., 2020 (2020), 585. https://doi.org/10.1186/s13662-020-03040-x doi: 10.1186/s13662-020-03040-x
    [19] R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293–299. https://doi.org/10.1007/s00013-014-0620-x doi: 10.1007/s00013-014-0620-x
    [20] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [21] C. S. Goodrich, M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446–452. https://doi.org/10.1016/j.aml.2019.07.003 doi: 10.1016/j.aml.2019.07.003
    [22] B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589–597. https://doi.org/10.1007/s00013-015-0765-2 doi: 10.1007/s00013-015-0765-2
    [23] C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Differ. Equ. Appl., 25 (2019), 801–814. https://doi.org/10.1080/10236198.2018.1542431 doi: 10.1080/10236198.2018.1542431
    [24] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [25] P. O. Mohammed, F. K. Hamasalh, T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2021 (2021), 213. https://doi.org/10.1186/s13662-021-03372-2 doi: 10.1186/s13662-021-03372-2
    [26] L. Erbe, C. S. Goodrich, B. Jia, A. Peterson, Survey of the qualitative properties of fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ. Equ., 2016 (2016), 43. https://doi.org/10.1186/s13662-016-0760-3 doi: 10.1186/s13662-016-0760-3
    [27] C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769–779. https://doi.org/10.7153/MIA-19-57 doi: 10.7153/MIA-19-57
    [28] C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. http://dx.doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
    [29] C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Isr. J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2
    [30] D. Mozyrska, D. F. M. Torres, M. Wyrwas, Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales, Nonlinear Anal. Hybrid Syst., 32 (2019), 168–176. https://doi.org/10.1016/j.nahs.2018.12.001 doi: 10.1016/j.nahs.2018.12.001
    [31] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [32] C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Meth. Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
    [33] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using $h$-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1675) PDF downloads(90) Cited by(4)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog