
In this study, we consider positivity and other related concepts such as α−convexity and α−monotonicity for discrete fractional operators with exponential kernel. Namely, we consider discrete Δ fractional operators in the Caputo sense and we apply efficient initial conditions to obtain our conclusions. Note positivity results are an important factor for obtaining the composite of double discrete fractional operators having different orders.
Citation: Pshtiwan Othman Mohammed, Donal O'Regan, Aram Bahroz Brzo, Khadijah M. Abualnaja, Dumitru Baleanu. Analysis of positivity results for discrete fractional operators by means of exponential kernels[J]. AIMS Mathematics, 2022, 7(9): 15812-15823. doi: 10.3934/math.2022865
[1] | Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri . Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175 |
[2] | Hashem Althagafi, Ahmed Ghezal . Solving a system of nonlinear difference equations with bilinear dynamics. AIMS Mathematics, 2024, 9(12): 34067-34089. doi: 10.3934/math.20241624 |
[3] | M. T. Alharthi . Correction: On the solutions of some systems of rational difference equations. AIMS Mathematics, 2025, 10(2): 2277-2278. doi: 10.3934/math.2025105 |
[4] | M. T. Alharthi . On the solutions of some systems of rational difference equations. AIMS Mathematics, 2024, 9(11): 30320-30347. doi: 10.3934/math.20241463 |
[5] | Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893 |
[6] | Shulan Kong, Chengbin Wang, Yawen Sun . A recursive filter for a class of two-dimensional nonlinear stochastic systems. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079 |
[7] | Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974 |
[8] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065 |
[9] | Ibraheem M. Alsulami, E. M. Elsayed . On a class of nonlinear rational systems of difference equations. AIMS Mathematics, 2023, 8(7): 15466-15485. doi: 10.3934/math.2023789 |
[10] | Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470 |
In this study, we consider positivity and other related concepts such as α−convexity and α−monotonicity for discrete fractional operators with exponential kernel. Namely, we consider discrete Δ fractional operators in the Caputo sense and we apply efficient initial conditions to obtain our conclusions. Note positivity results are an important factor for obtaining the composite of double discrete fractional operators having different orders.
This paper is devoted to study the expressions forms of the solutions and periodic nature of the following third-order rational systems of difference equations
xn+1=yn−1znzn±xn−2,yn+1=zn−1xnxn±yn−2, zn+1=xn−1ynyn±zn−2, |
with initial conditions are non-zero real numbers.
In the recent years, there has been great concern in studying the systems of difference equations. One of the most important reasons for this is a exigency for some mechanization which can be used in discussing equations emerge in mathematical models characterizing real life situations in economic, genetics, probability theory, psychology, population biology and so on.
Difference equations display naturally as discrete peer and as numerical solutions of differential equations having more applications in ecology, biology, physics, economy, and so forth. For all that the difference equations are quite simple in expressions, it is frequently difficult to realize completely the dynamics of their solutions see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and the related references therein.
There are some papers dealed with the difference equations systems, for example, The periodic nature of the solutions of the nonlinear difference equations system
An+1=1Cn,Bn+1=BnAn−1Bn−1,Cn+1=1An−1, |
has been studied by Cinar in [7].
Almatrafi [3] determined the analytical solutions of the following systems of rational recursive equations
xn+1=xn−1yn−3yn−1(±1±xn−1yn−3),yn+1=yn−1xn−3xn−1(±1±yn−1xn−3). |
In [20], Khaliq and Shoaib studied the local and global asymptotic behavior of non-negative equilibrium points of a three-dimensional system of two order rational difference equations
xn+1=xn−1ε+xn−1yn−1zn−1,yn+1=yn−1ζ+xn−1yn−1zn−1, zn+1=zn−1η+xn−1yn−1zn−1. |
In [9], Elabbasy et al. obtained the form of the solutions of some cases of the following system of difference equations
xn+1=a1+a2yna3zn+a4xn−1zn, yn+1=b1zn−1+b2znb3xnyn+b4xnyn−1,zn+1=c1zn−1+c2znc3xn−1yn−1+c4xn−1yn+c5xnyn. |
In [12], Elsayed et al. have got the solutions of the systems of rational higher order difference equations
An+1=1An−pBn−p,Bn+1=An−pBn−pAn−qBn−q, |
and
An+1=1An−pBn−pCn−p,Bn+1=An−pBn−pCn−pAn−qBn−qCn−q,Cn+1=An−qBn−qCn−qAn−rBn−rCn−r. |
Kurbanli [25,26] investigated the behavior of the solutions of the following systems
An+1=An−1An−1Bn−1,Bn+1=Bn−1Bn−1An−1, Cn+1=1CnBn,An+1=An−1An−1Bn−1,Bn+1=Bn−1Bn−1An−1, Cn+1=Cn−1Cn−1Bn−1. |
In [32], Yalçınkaya has obtained the conditions for the global asymptotically stable of the system
An+1=BnAn−1+aBn+An−1,Bn+1=AnBn−1+aAn+Bn−1. |
Zhang et al. [39] investigated the persistence, boundedness and the global asymptotically stable of the solutions of the following system
Rn=A+1Qn−p, Qn=A+Qn−1Rn−rQn−s. |
Similar to difference equations and systems were studied see [21,22,23,24,27,28,29,30,31,32,33,34,35,36,37,38].
In this section, we obtain the expressions form of the solutions of the following three dimension system of difference equations
xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, | (1) |
where n∈N0 and the initial conditions are non-zero real numbers.
Theorem 1. We assume that {xn,yn,zn} are solutions of system (1).Then
x6n−2=ak3nn−1∏i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n−1=bf3nn−1∏i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n=c3n+1n−1∏i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n+1=ek3n+1(a+k)n−1∏i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k), |
x6n+2=f3n+2(g+2f)n−1∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n+3=hc3n+2(d+c)(d+3c)n−1∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c), |
y6n−2=dc3nn−1∏i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n−1=ek3nn−1∏i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n=f3n+1n−1∏i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),y6n+1=hc3n+1(d+c)n−1∏i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n+2=k3n+2(a+2k)n−1∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n+3=bf3n+2(g+f)(g+3f)n−1∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f), |
and
z6n−2=gf3nn−1∏i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n−1=hc3nn−1∏i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n=k3n+1n−1∏i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n+1=bf3n+1(g+f)n−1∏i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f), |
z6n+2=c3n+2(d+2c)n−1∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n+3=ek3n+2(a+k)(a+3k)n−1∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k), |
where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k.
Proof. For n=0 the result holds. Now assume that n>1 and that our assumption holds for n−1, that is,
x6n−8=ak3n−3n−2∏i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n−7=bf3n−3n−2∏i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n−6=c3n−2n−2∏i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n−5=ek3n−2(a+k)n−2∏i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),x6n−4=f3n−1(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n−3=hc3n−1(d+c)(d+3c)n−2∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c), |
y6n−8=dc3n−3n−2∏i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n−7=ek3n−3n−2∏i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n−6=f3n−2n−2∏i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f), |
y6n−5=hc3n−2(d+c)n−2∏i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n−4=k3n−1(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n−3=bf3n−1(g+f)(g+3f)n−2∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f), |
and
z6n−8=gf3n−3n−2∏i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n−7=hc3n−3n−2∏i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n−6=k3n−2n−2∏i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n−5=bf3n−2(g+f)n−2∏i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),z6n−4=c3n−1(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n−3=ek3n−1(a+k)(a+3k)n−2∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k). |
It follows from Eq (1) that
x6n−2=y6n−4z6n−3z6n−3+x6n−5=(k3n−1(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k) )(ek3n−1(a+k)(a+3k)n−2∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k) )(ek3n−1(a+k)(a+3k)n−2∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k) )+(ek3n−2(a+k)n−2∏i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k) )=(k3n(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))(a+3k)n−2∏i=0(a+(6i+9)k)[(k(a+3k)n−2∏i=0(a+(6i+9)k))+(1n−2∏i=0(a+(6i+3)k))]=(k3n(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+((a+3k)n−2∏i=0(a+(6i+9)k)n−2∏i=0(a+(6i+3)k))]=(k3n(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+(a+(6n−3)k)]=ak3na(a+2k)(a+(6n−2)k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k). |
Then we see that
x6n−2=k3nn−1∏i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k). |
Also, we see from Eq (1) that
y6n−2=z6n−4x6n−3x6n−3+y6n−5=(c3n−1(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c) )(hc3n−1(d+c)(d+3c)n−2∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c) )(hc3n−1(d+c)(d+3c)n−2∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c) )+(hc3n−2(d+c)n−2∏i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c) )=(c3n(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))(d+3c)n−2∏i=0(d+(6i+9)c)[(c(d+3c)n−2∏i=0(d+(6i+9)c))+(1n−2∏i=0(d+(6i+3)c))]=(c3n(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))[c+d+(6n−3)c]=c3n[d+(6n−2)c](d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c). |
Then
y6n−2=dc3nn−1∏i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c). |
Finally from Eq (1), we see that
z6n−2=x6n−4y6n−3y6n−3+z6n−5=(f3n−1(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f) )(bf3n−1(g+f)(g+3f)n−2∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f) )(bf3n−1(g+f)(g+3f)n−2∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f) )+(bf3n−2(g+f)n−2∏i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f) )=(f3n(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))(g+3f)n−2∏i=0(g+(6i+9)f)[(f(g+3f)n−2∏i=0(g+(6i+9)f))+(1n−2∏i=0(g+(6i+3)f))]=(f3n(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+((g+3f)n−2∏i=0(g+(6i+9)f)n−2∏i=0(g+(6i+3)f))]=(f3n(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+(g+(6n−3)f)]=f3n(g+(6n−2)f)(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f). |
Thus
z3n−2=gf3nn−1∏i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f). |
By similar way, one can show the other relations. This completes the proof.
Lemma 1. Let {xn,yn,zn} be a positive solution of system (1), then all solution of (1) is bounded and approaching to zero.
Proof. It follows from Eq (1) that
xn+1=yn−1znzn+xn−2≤yn−1, yn+1=zn−1xnxn+yn−2≤zn−1,zn+1=xn−1ynyn+zn−2≤xn−1, |
we see that
xn+4≤yn+2, yn+2≤zn, zn≤xn−2, ⇒ xn+4<xn−2,yn+4≤zn+2, zn+2≤xn, xn≤yn−2, ⇒ yn+4<yn−2,zn+4≤xn+2, xn+2≤yn, yn≤zn−2, ⇒ zn+4<zn−2, |
Then all subsequences of {xn,yn,zn} (i.e., for {xn} are {x6n−2}, {x6n−1}, {x6n}, {x6n+1}, {x6n+2}, {x6n+3} are decreasing and at that time are bounded from above by K,L and M since K=max{x−2,x−1,x0,x1,x2,x3}, L=max{y−2,y−1,y0,y1,y2,y3} and M=max{z−2,z−1,z0,z1,z2,z3}.
Example 1. We assume an interesting numerical example for the system (1) with x−2=−.22,x−1=−.4, x0=.12,y−2=−.62, y−1=4, y0=.3,z−2=.4,z−1=.53 andz0=−2. (See Figure 1).
In this section, we get the solution's form of the following system of difference equations
xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn−zn−2, | (2) |
where n∈N0 and the initial values are non-zero real numbers with x−2≠±z0,≠−2z0, z−2≠y0,≠2y0,≠3y0 and y−2≠2x0,≠±x0.
Theorem 2. Assume that {xn,yn,zn} are solutions of (2). Then for n=0,1,2,...,
x6n−2=(−1)nk3na2n−1(a+2k)n, x6n−1=(−1)nbf3n(f−g)2n(3f−g)n, x6n=(−1)nc3n+1d2n(2c−d)n,x6n+1=ek3n+1(a−k)n(a+k)2n+1, x6n+2=(−1)nf3n+2gn(2f−g)2n+1, x6n+3=(−1)nhc3n+2(c−d)2n+1(c+d)n+1, |
y6n−2=(−1)nc3nd2n−1(2c−d)n, y6n−1=ek3n(a−k)n(a+k)2n, y6n=(−1)nf3n+1gn(2f−g)2n,y6n+1=(−1)nhc3n+1(c−d)2n(c+d)n+1, y6n+2=(−1)nk3n+2a2n(a+2k)n+1, y6n+3=(−1)nbf3n+2(f−g)2n+1(3f−g)n+1, |
and
z6n−2=(−1)nf3ngn−1(2f−g)2n, z6n−1=(−1)nhc3n(c−d)2n(c+d)n, z6n=(−1)nk3n+1a2n(a+2k)n,z6n+1=(−1)nbf3n+1(f−g)2n+1(3f−g)n, z6n+2=(−1)n+1c3n+2d2n+1(2c−d)n, z6n+3=−ek3n+2(a−k)n(a+k)2n+2, |
where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k.
Proof. The result is true for n=0. Now suppose that n>0 and that our claim verified for n−1. That is,
x6n−8=(−1)n−1k3n−3a2n−3(a+2k)n−1, x6n−7=(−1)n−1bf3n−3(f−g)2n−2(3f−g)n−1, x6n−6=(−1)n−1c3n−2d2n−2(2c−d)n−1,x6n−5=ek3n−2(a−k)n−1(a+k)2n−1, x6n−4=(−1)n−1f3n−1gn−1(2f−g)2n−1, x6n−3=(−1)n−1hc3n−1(c−d)2n−1(c+d)n, |
y6n−8=(−1)n−1c3n−3d2n−3(2c−d)n−1, y6n−7=ek3n−3(a−k)n−1(a+k)2n−2, y6n−6=(−1)n−1f3n−2gn−1(2f−g)2n−2,y6n−5=(−1)n−1hc3n−2(c−d)2n−2(c+d)n, y6n−4=(−1)n−1k3n−1a2n−2(a+2k)n, y6n−3=(−1)n−1bf3n−1(f−g)2n−1(3f−g)n, |
and
z6n−8=(−1)n−1f3n−3gn−2(2f−g)2n−2, z6n−7=(−1)n−1hc3n−3(c−d)2n−2(c+d)n−1, z6n−6=(−1)n−1k3n−2a2n−2(a+2k)n−1,z6n−5=(−1)n−1bf3n−2(f−g)2n−1(3f−g)n−1, z6n−4=(−1)nc3n−1d2n−1(2c−d)n−1, z6n−3=−ek3n−1(a−k)n−1(a+k)2n. |
Now from Eq (2), it follows that
x6n−2=y6n−4z6n−3z6n−3+x6n−5=((−1)n−1k3n−1a2n−2(a+2k)n)(−ek3n−1(a−k)n−1(a+k)2n)(−ek3n−1(a−k)n−1(a+k)2n)+(ek3n−2(a−k)n−1(a+k)2n−1)=((−1)nk3na2n−2(a+2k)n)(−k+a+k)=(−1)nk3na2n−1(a+2k)n,y6n−2=z6n−4x6n−3x6n−3+y6n−5=((−1)nc3n−1d2n−1(2c−d)n−1)((−1)n−1hc3n−1(c−d)2n−1(c+d)n)((−1)n−1hc3n−1(c−d)2n−1(c+d)n)+((−1)n−1hc3n−2(c−d)2n−2(c+d)n)=((−1)nc3nd2n−1(2c−d)n−1)c+c−d=(−1)nc3nd2n−1(2c−d)n,z6n−2=x6n−4y6n−3y6n−3−z6n−5=((−1)n−1f3n−1gn−1(2f−g)2n−1)((−1)n−1bf3n−1(f−g)2n−1(3f−g)n)((−1)n−1bf3n−1(f−g)2n−1(3f−g)n)−((−1)n−1bf3n−2(f−g)2n−1(3f−g)n−1)=((−1)n−1f3ngn−1(2f−g)2n−1)(f−3f+g)=(−1)nf3ngn−1(2f−g)2n. |
Also, we see from Eq (2) that
x6n−1=y6n−3z6n−2z6n−2+x6n−4=((−1)n−1bf3n−1(f−g)2n−1(3f−g)n)((−1)nf3ngn−1(2f−g)2n)((−1)nf3ngn−1(2f−g)2n)+((−1)n−1f3n−1gn−1(2f−g)2n−1)=((−1)nbf3n(f−g)2n−1(3f−g)n)(−f+2f−g)=(−1)nbf3n(f−g)2n(3f−g)n,y6n−1=z6n−3x6n−2x6n−2+y6n−4=(−ek3n−1(a−k)n−1(a+k)2n)((−1)nk3na2n−1(a+2k)n)((−1)nk3na2n−1(a+2k)n)+((−1)n−1k3n−1a2n−2(a+2k)n)=(ek3n(a−k)n−1(a+k)2n)−k+a=ek3n(a−k)n(a+k)2n,z6n−1=x6n−3y6n−2y6n−2−z6n−4=((−1)n−1hc3n−1(c−d)2n−1(c+d)n)((−1)nc3nd2n−1(2c−d)n)((−1)nc3nd2n−1(2c−d)n)−((−1)nc3n−1d2n−1(2c−d)n−1)=((−1)n−1hc3n(c−d)2n−1(c+d)n)c−(2c−d)=(−1)nhc3n(c−d)2n(c+d)n. |
Also, we can prove the other relations.
Example 2. See below Figure 2 for system (2) with the initial conditions x−2=11,x−1=5, x0=13,y−2=6, y−1=7, y0=3,z−2=14, z−1=9 andz0=2.
Here, we obtain the form of solutions of the system
xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn+zn−2, | (3) |
where n∈N0 and the initial values are non-zero real numbers with x−2≠±z0,≠2z0, z−2≠±y0,≠−2y0 and y−2≠x0,≠2x0,≠3x0.
Theorem 3. If {xn,yn,zn} are solutions of system (3) where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k. Then for n=0,1,2,...,
x6n−2=k3na2n−1(a−2k)n, x6n−1=(−1)nbf3n(f−g)n(f+g)2n, x6n=(−1)nc3n+1dn(d−2c)2n,x6n+1=(−1)nek3n+1(a−k)2n(a+k)n+1, x6n+2=(−1)nf3n+2g2n(2f+g)n+1, x6n+3=(−1)nhc3n+2(c−d)2n+1(3c−d)n+1, |
y6n−2=(−1)nc3ndn−1(d−2c)2n, y6n−1=(−1)nek3n(a−k)2n(a+k)n, y6n=(−1)nf3n+1g2n(2f+g)n,y6n+1=(−1)nhc3n+1(c−d)2n+1(3c−d)n, y6n+2=−k3n+2a2n+1(a−2k)n, y6n+3=(−1)nbf3n+2(f−g)n(f+g)2n+2, |
and
z6n−2=(−1)nf3ng2n−1(2f+g)n, z6n−1=(−1)nhc3n(c−d)2n(3c−d)n, z6n=k3n+1a2n(a−2k)n,z6n+1=(−1)nbf3n+1(f−g)n(f+g)2n+1, z6n+2=(−1)nc3n+2dn(2c−d)2n+1, z6n+3=(−1)n+1ek3n+2(a−k)2n+1(a+k)n+1. |
Proof. As the proof of Theorem 2 and so will be left to the reader.
Example 3. We put the initials x−2=8,x−1=15, x0=13,y−2=6,y−1=7, y0=3,z−2=14,z−1=19 andz0=2, for the system (3), see Figure 3.
The following systems can be treated similarly.
In this section, we deal with the solutions of the following system
xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, | (4) |
where n∈N0 and the initial values are non-zero real with x−2≠z0,≠2z0,≠3z0, z−2≠±y0,≠2y0 and y−2≠±x0,≠−2x0.
Theorem 4. The solutions of system (4) are given by
x6n−2=(−1)nk3nan−1(a−2k)2n, x6n−1=(−1)nbf3n(f−g)2n(f+g)n, x6n=(−1)nc3n+1d2n(d+2c)n,x6n+1=−ek3n+1(a−k)2n+1(a−3k)n, x6n+2=(−1)n+1f3n+2g2n+1(2f−g)n, x6n+3=(−1)n+1hc3n+2(c−d)n(c+d)2n+2, |
y6n−2=(−1)nc3nd2n−1(d+2c)n, y6n−1=ek3n(a−k)2n(a−3k)n, y6n=(−1)nf3n+1g2n(2f−g)n,y6n+1=(−1)nhc3n+1(c+d)2n+1(c−d)n, y6n+2=−k3n+2an(a−2k)2n+1, y6n+3=(−1)nbf3n+2(f−g)2n+1(f+g)n+1, |
and
z6n−2=(−1)nf3ng2n−1(2f−g)n, z6n−1=(−1)nhc3n(c+d)2n(c−d)n, z6n=(−1)nk3n+1an(a−2k)2n,z6n+1=(−1)nbf3n+1(f−g)2n(f+g)n+1, z6n+2=(−1)nc3n+2d2n(2c+d)n+1, z6n+3=ek3n+2(a−k)2n+1(a−3k)n+1, |
where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k.
Example 4. Figure 4 shows the behavior of the solution of system (4) with x−2=18,x−1=−15, x0=3,y−2=6, y−1=.7, y0=−3, z−2=4,z−1=−9 andz0=5.
In this section, we obtain the solutions of the difference system
xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn−zn−2, | (5) |
where the initials are arbitrary non-zero real numbers with x−2≠z0, z−2≠y0 and y−2≠x0.
Theorem 5. If {xn,yn,zn} are solutions of system (5) where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k. Then
x6n−2=k3na3n−1, x6n−1=bf3n(f−g)3n, x6n=c3n+1d3n,x6n+1=ek3n+1(k−a)3n+1, x6n+2=f3n+2g3n+1, x6n+3=hc3n+2(c−d)3n+2, |
y6n−2=c3nd3n−1, y6n−1=ek3n(k−a)3n, y6n=f3n+1g3n,y6n+1=hc3n+1(c−d)3n+1, y6n+2=k3n+2a3n+1, y6n+3=bf3n+2(f−g)3n+2, |
and
z6n−2=f3ng3n−1, z6n−1=hc3n(c−d)3n, z6n=k3n+1a3n,z6n+1=bf3n+1(f−g)3n+1, z6n+2=c3n+2d3n+1, z6n+3=ek3n+2(k−a)3n+2. |
Example 5. Figure 5 shows the dynamics of the solution of system (5) with x−2=18,x−1=−15,x0=3,y−2=6,y−1=.7, y0=−3,z−2=4,z−1=−9 andz0=5.
This paper discussed the expression's form and boundedness of some systems of rational third order difference equations. In Section 2, we studied the qualitative behavior of system xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, first we have got the form of the solutions of this system, studied the boundedness and gave numerical example and drew it by using Matlab. In Section 3, we have got the solution's of the system xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn−zn−2, and take a numerical example. In Sections 4–6, we obtained the solution of the following systems respectively, xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn+zn−2, xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, and xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn−zn−2. Also, in each case we take a numerical example to illustrates the results.
This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 233–130–1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.
All authors declare no conflicts of interest in this paper.
[1] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-25562-0 |
[2] | F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176. |
[3] |
H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
![]() |
[4] |
C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. https://doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
![]() |
[5] |
C. Lizama, M. Murillo-Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math., 339 (2018), 356–366. https://doi.org/10.1016/j.cam.2017.07.027 doi: 10.1016/j.cam.2017.07.027
![]() |
[6] |
H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, Y. S. Hamed, Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations, Discrete Contin. Dyn. Syst., 15 (2021), 427–440. http://dx.doi.org/10.3934/dcdss.2021083 doi: 10.3934/dcdss.2021083
![]() |
[7] | İlhane, E. Analysis of the spread of Hookworm infection with Caputo-Fabrizio fractional derivative, Turk. J. Sci., 7 (2022), 43–52. |
[8] |
M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 25 (2022), 1270–1273. https://doi.org/10.1016/j.aml.2011.11.022 doi: 10.1016/j.aml.2011.11.022
![]() |
[9] |
S. Rezapour, A. Boulfoul, B. Tellab, M. E. Samei, S. Etemad, R. George, Fixed point theory and the Liouville-Caputo integro-differential FBVP with multiple nonlinear terms, J. Funct. Spaces, 2022 (2022), 6713533. https://doi.org/10.1155/2022/6713533 doi: 10.1155/2022/6713533
![]() |
[10] |
T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
![]() |
[11] |
T. Abdeljawad, Q. M. Al-Mdallal, M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017), 4149320. https://doi.org/10.1155/2017/4149320 doi: 10.1155/2017/4149320
![]() |
[12] | T. Abdeljawad, F. Jarad, A. Atangana, P. O. Mohammed, On a new type of fractional difference operators on h-step isolated time scales, J. Fract. Calc. Nonlinear Syst., 1 (2020), 46–74. |
[13] |
T. Abdeljawad, Different type kernel h-fractional differences and their fractional h-sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
![]() |
[14] | R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. |
[15] |
C. R. Chen, M. Bohner, B. G. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Meth. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
![]() |
[16] |
G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
![]() |
[17] | F. Atici, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9. |
[18] |
B. Ghanbari, On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators, Adv. Differ. Equ., 2020 (2020), 585. https://doi.org/10.1186/s13662-020-03040-x doi: 10.1186/s13662-020-03040-x
![]() |
[19] |
R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293–299. https://doi.org/10.1007/s00013-014-0620-x doi: 10.1007/s00013-014-0620-x
![]() |
[20] |
P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
![]() |
[21] |
C. S. Goodrich, M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446–452. https://doi.org/10.1016/j.aml.2019.07.003 doi: 10.1016/j.aml.2019.07.003
![]() |
[22] |
B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589–597. https://doi.org/10.1007/s00013-015-0765-2 doi: 10.1007/s00013-015-0765-2
![]() |
[23] |
C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Differ. Equ. Appl., 25 (2019), 801–814. https://doi.org/10.1080/10236198.2018.1542431 doi: 10.1080/10236198.2018.1542431
![]() |
[24] |
P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
![]() |
[25] |
P. O. Mohammed, F. K. Hamasalh, T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2021 (2021), 213. https://doi.org/10.1186/s13662-021-03372-2 doi: 10.1186/s13662-021-03372-2
![]() |
[26] |
L. Erbe, C. S. Goodrich, B. Jia, A. Peterson, Survey of the qualitative properties of fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ. Equ., 2016 (2016), 43. https://doi.org/10.1186/s13662-016-0760-3 doi: 10.1186/s13662-016-0760-3
![]() |
[27] |
C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769–779. https://doi.org/10.7153/MIA-19-57 doi: 10.7153/MIA-19-57
![]() |
[28] |
C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. http://dx.doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
![]() |
[29] |
C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Isr. J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2
![]() |
[30] |
D. Mozyrska, D. F. M. Torres, M. Wyrwas, Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales, Nonlinear Anal. Hybrid Syst., 32 (2019), 168–176. https://doi.org/10.1016/j.nahs.2018.12.001 doi: 10.1016/j.nahs.2018.12.001
![]() |
[31] |
P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
![]() |
[32] |
C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Meth. Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
![]() |
[33] |
P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
![]() |
1. | Khalil S. Al-Basyouni, Elsayed M. Elsayed, On Some Solvable Systems of Some Rational Difference Equations of Third Order, 2023, 11, 2227-7390, 1047, 10.3390/math11041047 | |
2. | Ibraheem M. Alsulami, E. M. Elsayed, On a class of nonlinear rational systems of difference equations, 2023, 8, 2473-6988, 15466, 10.3934/math.2023789 | |
3. | E.M. Elsayed, B.S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, 2023, 74, 11100168, 269, 10.1016/j.aej.2023.05.026 | |
4. | Hashem Althagafi, Dynamics of difference systems: a mathematical study with applications to neural systems, 2025, 10, 2473-6988, 2869, 10.3934/math.2025134 |