Research article Special Issues

Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation

  • Received: 13 May 2022 Revised: 15 June 2022 Accepted: 18 June 2022 Published: 27 June 2022
  • MSC : 35A25, 35G50, 35Q35, 37K10

  • In this paper, a (3+1)-dimensional nonlinear evolution equation is considered. First, its bilinear formalism is derived by introducing dependent variable transformation. Then, its breather wave solutions are obtained by employing the extend homoclinic test method and related figures are presented to illustrate the dynamical features of these obtained solutions. Next, its resonant multi-soliton solutions are obtained by using the linear superposition principle. Meanwhile, 3D profiles and contour plots are presented to exhibit the process of wave motion. Finally, M-breather wave solutions such as one-breather, two-breather, three-breather and hybrid solutions between breathers and solitons are constructed by applying the complex conjugate method to multi-soliton solutions. Furthermore, their evolutions are shown graphically by choosing suitable parameters.

    Citation: Sixing Tao. Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation[J]. AIMS Mathematics, 2022, 7(9): 15795-15811. doi: 10.3934/math.2022864

    Related Papers:

  • In this paper, a (3+1)-dimensional nonlinear evolution equation is considered. First, its bilinear formalism is derived by introducing dependent variable transformation. Then, its breather wave solutions are obtained by employing the extend homoclinic test method and related figures are presented to illustrate the dynamical features of these obtained solutions. Next, its resonant multi-soliton solutions are obtained by using the linear superposition principle. Meanwhile, 3D profiles and contour plots are presented to exhibit the process of wave motion. Finally, M-breather wave solutions such as one-breather, two-breather, three-breather and hybrid solutions between breathers and solitons are constructed by applying the complex conjugate method to multi-soliton solutions. Furthermore, their evolutions are shown graphically by choosing suitable parameters.



    加载中


    [1] R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407–408. https://doi.org/10.1016/0375-9601(81)90423-0 doi: 10.1016/0375-9601(81)90423-0
    [2] W. X. Ma, N-soliton solution and the Hirota condition of a (2+ 1)-dimensional combined equation, Math. Comput. Simulat., 190 (2021), 270–279. https://doi.org/10.1016/j.matcom.2021.05.020 doi: 10.1016/j.matcom.2021.05.020
    [3] W. X. Ma, N-soliton solution of a combined pKP-BKP equation, J. Geom. Phys., 165 (2021), 104191. https://doi.org/10.1016/j.geomphys.2021.104191 doi: 10.1016/j.geomphys.2021.104191
    [4] W. X. Ma, X. L. Yong, X. Lü, Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations, Wave Motion, 103 (2021), 102719. https://doi.org/10.1016/j.wavemoti.2021.102719 doi: 10.1016/j.wavemoti.2021.102719
    [5] J. X. Luo, Exact analytical solution of a novel modified nonlinear Schrödinger equation: Solitary quantum waves on a lattice, Stud. Appl. Math., 146 (2021), 550–562. https://doi.org/10.1111/sapm.12355 doi: 10.1111/sapm.12355
    [6] B. Q. Li, A. M. Wazwaz, Y. L. Ma, Two new types of nonlocal Boussinesq equations in water waves: Bright and dark soliton solutions, Chin. J. Phys., 77 (2022), 1782–1788. https://doi.org/10.1016/j.cjph.2021.11.008 doi: 10.1016/j.cjph.2021.11.008
    [7] A. A. Hamed, S. Shamseldeen, M. S. Abdel Latif, H. M. Nour, Analytical soliton solutions and modulation instability for a generalized (3 + 1)-dimensional coupled variable-coefficient nonlinear Schroödinger equations in nonlinear optics, Mod. Phys. Lett. B, 35 (2021), 2050407. https://doi.org/10.1142/S0217984920504072 doi: 10.1142/S0217984920504072
    [8] B. F. Feng, L. M. Ling, D. A. Takahashi, Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144 (2020), 46–101. https://doi.org/10.1111/sapm.12287 doi: 10.1111/sapm.12287
    [9] B. Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. https://doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822
    [10] J. Y. Yang, W. X. Ma, C. M. Khalique, Determining lump solutions for a combined soliton equation in (2+ 1)-dimensions, Eur. Phys. J. Plus, 135 (2020), 1–13. https://doi.org/10.1140/epjp/s13360-020-00463-z doi: 10.1140/epjp/s13360-020-00463-z
    [11] S. F. Tian, D. Guo, X. B. Wang, T. T. Zhang, Traveling wave, lump wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+ 1)-dimensional Kadomtsev-Petviashvili equation with Bäcklund transformation, J. Appl. Anal. Comput., 11 (2021), 45–58. https://doi.org/10.11948/20190086 doi: 10.11948/20190086
    [12] Y. L. Ma, A. M. Wazwaz, B. Q. Li, New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions, Nonlinear Dyn., 104 (2021), 1581–1594. https://doi.org/10.1007/s11071-021-06357-8 doi: 10.1007/s11071-021-06357-8
    [13] Y. Y. Feng, S. D. Bilige, Multiple rogue wave solutions of (2+ 1)-dimensional YTSF equation via Hirota bilinear method, Wave. Random Complex, 31 (2021), 1–17. https://doi.org/10.1080/17455030.2021.1900625 doi: 10.1080/17455030.2021.1900625
    [14] A. A. Hamed, A. H. Abdel Kader, M. S. Abdel Latif, Solitons, rogue waves and breather solutions for the (2+ 1)-dimensional nonlinear Schrödinger equation with variable coefficients, Optik, 216 (2020), 164768. https://doi.org/10.1016/j.ijleo.2020.164768 doi: 10.1016/j.ijleo.2020.164768
    [15] W. H. Liu, Y. F. Zhang, Resonant multiple wave solutions, complexiton solutions and rogue waves of a generalized (3+ 1)-dimensional nonlinear wave in liquid with gas bubbles, Wave. Random Complex, 30 (2020), 470–480. https://doi.org/10.1080/17455030.2018.1528026 doi: 10.1080/17455030.2018.1528026
    [16] H. M. Ahmed, W. B. Rabie, M. A. Ragusa, Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method, Anal. Math. Phys., 11 (2021), 1–16. https://doi.org/10.1007/s13324-020-00464-2 doi: 10.1007/s13324-020-00464-2
    [17] B. Q. Li, Y. L. Ma, Solitons resonant behavior for a waveguide directional coupler system in optical fibers, Opt. Quant. Electron., 50 (2018), 1–14. https://doi.org/10.1007/s11082-018-1536-7 doi: 10.1007/s11082-018-1536-7
    [18] Y. L. Ma, B. Q. Li, Bifurcation solitons and breathers for the nonlocal Boussinesq equations, Appl. Math. Lett., 124 (2022), 107677. https://doi.org/10.1016/j.aml.2021.107677 doi: 10.1016/j.aml.2021.107677
    [19] Y. L. Ma, A. M. Wazwaz, B. Q. Li, Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids, Appl. Math. Lett., 413 (2021), 127585. https://doi.org/10.1016/j.physleta.2021.127585 doi: 10.1016/j.physleta.2021.127585
    [20] A. H. Abdel Kader, M. S. Abdel Latif, D. Baleanu, $W-$ Shaped, bright, and dark soliton solutions for a generalized Quasi-1D Bose-Einstein condensate system with local M-derivative, Braz. J. Phys., 52 (2022), 1–8. https://doi.org/10.1007/s13538-021-01015-1 doi: 10.1007/s13538-021-01015-1
    [21] H. Elzehri, A. H. Abdel Kader, M. S. Abdel Latif, Kink wave, dark and bright soliton solutions for complex Ginzburg-Landau equation using Lie symmetry method, Optik, 241 (2022), 167048. https://doi.org/10.1016/j.ijleo.2021.167048 doi: 10.1016/j.ijleo.2021.167048
    [22] Z. D. Dai, J. Liu, D. L. Li, Applications of HTA and EHTA to YTSF equation, Appl. Math. Comput., 207 (2009), 360–364. https://doi.org/10.1016/j.amc.2008.10.042 doi: 10.1016/j.amc.2008.10.042
    [23] Z. H. Xu, H. L. Chen, Z. D. Dai, Rogue wave for the (2+ 1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Lett., 37 (2014), 34–38. https://doi.org/10.1016/j.aml.2014.05.005 doi: 10.1016/j.aml.2014.05.005
    [24] W. X. Ma, E. G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61 (2011), 950–959. https://doi.org/10.1016/j.camwa.2010.12.043 doi: 10.1016/j.camwa.2010.12.043
    [25] F. H. Lin, S. T. Chen, Q. X. Qu, J. P. Wang, X. W. Zhou, X. Lü, Resonant multiple wave solutions to a new (3+ 1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle, Appl. Math. Lett., 78 (2018), 112–117. https://doi.org/10.1016/j.aml.2017.10.013 doi: 10.1016/j.aml.2017.10.013
    [26] C. K. Kuo, W. X. Ma, A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equations via the linear superposition principle, Nonlinear Anal., 190 (2020), 111592. https://doi.org/10.1016/j.na.2019.111592 doi: 10.1016/j.na.2019.111592
    [27] C. K. Kuo, Novel resonant multi-soliton solutions and inelastic interactions to the (3+1)- and (4+1)- dimensional Boiti-Leon-Manna-Pempinelli equations via the simplified linear superposition principle, Eur. Phys. J. Plus, 136 (2021), 1–11. https://doi.org/10.1140/epjp/s13360-020-01062-8 doi: 10.1140/epjp/s13360-020-01062-8
    [28] B. Q. Li, Y. L. Ma, Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation, Nonlinear Dyn., 102 (2020), 1787–1799. https://doi.org/10.1007/s11071-020-06024-4 doi: 10.1007/s11071-020-06024-4
    [29] B. Q. Li, Y. L. Ma, N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics, Nonlinear Dyn., 101 (2021), 2449–2461. https://doi.org/10.1007/s11071-020-05906-x doi: 10.1007/s11071-020-05906-x
    [30] B. Q. Li, Y. L. Ma, Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation, Appl. Math. Comput., 386 (2020), 125469. https://doi.org/10.1016/j.amc.2020.125469 doi: 10.1016/j.amc.2020.125469
    [31] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 62 (1977), 205–206. https://doi.org/10.1016/0375-9601(77)90875-1 doi: 10.1016/0375-9601(77)90875-1
    [32] J. Satsuma, M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20 (1979), 1496–1503. https://doi.org/10.1063/1.524208 doi: 10.1063/1.524208
    [33] Y. Y. Feng, S. D. Bilige, Resonant multi-soliton, M-breather, M-lump and hybrid solutions of a combined pKP-BKP equation, J. Geom. Phys., 169 (2021), 104322. https://doi.org/10.1016/j.geomphys.2021.104322 doi: 10.1016/j.geomphys.2021.104322
    [34] H. D. Guo, T. C. Xia, B. B. Hu, Dynamics of abundant solutions to the (3+ 1)-dimensional generalized Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett., 105 (2020), 106301. https://doi.org/10.1016/j.aml.2020.106301 doi: 10.1016/j.aml.2020.106301
    [35] X. J. Zhou, O. A. Ilhan, J. Manafian, G. Singh, N. S. Tuguz, N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional generalized KDKK equation, J. Geom. Phys., 168 (2021), 104312. https://doi.org/10.1016/j.geomphys.2021.104312 doi: 10.1016/j.geomphys.2021.104312
    [36] J. Manafian, O. A. Ilhan, L. Avazpour, A. Alizadeh, N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid, Math. Method. Appl. Sci., 43 (2020), 9904–9927. https://doi.org/10.1002/mma.6665 doi: 10.1002/mma.6665
    [37] Z. L. Zhao, L. C. He, M-lump and hybrid solutions of a generalized (2+ 1)-dimensional Hirota-Satsuma-Ito equation, Appl. Math. Lett., 111 (2021), 106612. https://doi.org/10.1016/j.aml.2020.106612 doi: 10.1016/j.aml.2020.106612
    [38] Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+ 1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simul., 187 (2021), 125469. https://https://doi.org/10.1016/j.matcom.2021.03.012 doi: 10.1016/j.matcom.2021.03.012
    [39] Y. Y. Feng, X. M. Wang, S. D. Bilige, Evolutionary behavior and novel collision of various wave solutions to (3 + 1)-dimensional generalized Camassa-Holm Kadomtsev-Petviashvili equation, Nonlinear Dyn., 104 (2021), 4265–4275. https://doi.org/10.1007/s11071-021-06463-7 doi: 10.1007/s11071-021-06463-7
    [40] P. F. Han, T. Bao, Interaction of multiple superposition solutions for the (4+ 1)-dimensional Boiti-LeonManna-Pempinelli equation, Nonlinear Dyn., 105 (2021), 717–734. https://doi.org/10.1007/s11071-021-06603-z doi: 10.1007/s11071-021-06603-z
    [41] Y. Zhang, Y. P. Liu, X. Y. Tang, M-lump and interactive solutions to a (3+1)- dimensional nonlinear system, Nonlinear Dyn., 93 (2018), 2533–2541. https://doi.org/10.1007/s11071-018-4340-9 doi: 10.1007/s11071-018-4340-9
    [42] Z. Y. Yan, New families of nontravelling wave solutions to a new (3+ 1)-dimensional potential-YTSF equation, Phys. Lett. A, 318 (2003), 78–83. https://doi.org/10.1016/j.physleta.2003.08.073 doi: 10.1016/j.physleta.2003.08.073
    [43] E. G. Fan, K. W. Chow, Darboux covariant lax pairs and infinite conservation laws of the (2+ 1)-dimensional breaking soliton equation, J. Math. Phys., 52 (2011), 023504. https://doi.org/10.1063/1.3545804 doi: 10.1063/1.3545804
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1658) PDF downloads(119) Cited by(7)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog