The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation by incorporating truncation effects within bounded domains, offering a flexible framework for modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient finite difference scheme approximates the fractional derivatives, followed by the LDG method for solving the equation. The scheme is proven unconditionally stable and convergent. Numerical experiments confirm the method's accuracy, efficiency, and robustness, highlighting its potential for broader applications in fractional differential equations.
Citation: Yanhua Gu. High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method[J]. AIMS Mathematics, 2025, 10(1): 1367-1383. doi: 10.3934/math.2025063
The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation by incorporating truncation effects within bounded domains, offering a flexible framework for modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient finite difference scheme approximates the fractional derivatives, followed by the LDG method for solving the equation. The scheme is proven unconditionally stable and convergent. Numerical experiments confirm the method's accuracy, efficiency, and robustness, highlighting its potential for broader applications in fractional differential equations.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, CRC Press, 2015. |
[3] |
M. Abbas, C. Ciobanescu, M. Asghar, A. Omame, Solution approximation of fractional boundary value problems and convergence analysis using AA-iterative scheme, AIMS Math., 9 (2024), 13129–13158. https://doi.org/10.3934/math.2024641 doi: 10.3934/math.2024641
![]() |
[4] | I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 1999. |
[5] |
M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134–147. https://doi.org/10.1007/BF00879562 doi: 10.1007/BF00879562
![]() |
[6] | J. H. He, Some applications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol., 15 (1999), 86–90. |
[7] | Y. Q. Chen, I. Podlubny, Distributed-order dynamic systems: Stability, simulation, applications and perspectives, London: Springer, 2012. |
[8] |
X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
![]() |
[9] |
H. G. Sun, W. Chen, H. Wei, Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
![]() |
[10] |
Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
![]() |
[11] |
X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. https://doi.org/10.1093/imanum/draa013 doi: 10.1093/imanum/draa013
![]() |
[12] |
L. B. Feng, P. Zhuang, F. Liu, I. Turner, Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Appl. Math. Comput., 257 (2015), 52–65. https://doi.org/10.1016/j.amc.2014.12.060 doi: 10.1016/j.amc.2014.12.060
![]() |
[13] |
F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
![]() |
[14] |
X. D. Zhang, Y. L. Feng, Z. Y. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equation, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
![]() |
[15] |
J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013
![]() |
[16] |
H. F. Ding, C. P. Li, High-order compact difference schemes for the modified anomalous sub-diffusion equation, Numer. Meth. Part. D. E., 32 (2016), 213–242. https://doi.org/10.1002/num.21992 doi: 10.1002/num.21992
![]() |
[17] |
M. Dehghan, M. Abbaszadeh, W. H. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 73 (2017), 120–127. https://doi.org/10.1016/j.aml.2017.04.011 doi: 10.1016/j.aml.2017.04.011
![]() |
[18] |
X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
![]() |
[19] |
C. P. Li, H. F. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 38 (2014), 3802–3821. https://doi.org/10.1016/j.apm.2013.12.002 doi: 10.1016/j.apm.2013.12.002
![]() |
[20] |
R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435–445. https://doi.org/10.1016/j.amc.2009.02.047 doi: 10.1016/j.amc.2009.02.047
![]() |
[21] |
J. C. Ren, Z. Z. Sun, Efficient numerical solution of the multi-term time fractional diffusion-wave equation, East Asian J. Appl. Math., 5 (2015), 1–28. https://doi.org/10.4208/eajam.080714.031114a doi: 10.4208/eajam.080714.031114a
![]() |
[22] |
H. X. Rui, J. Huang, Uniformly stable explicitly solvable finite difference method for fractional diffusion equations, East Asian J. Appl. Math., 5 (2015), 29–47. https://doi.org/10.4208/eajam.030614.051114a doi: 10.4208/eajam.030614.051114a
![]() |
[23] |
V. R. Hosseini, E. Shivanian, W. Chen, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 130 (2015), 33. https://doi.org/10.1140/epjp/i2015-15033-5 doi: 10.1140/epjp/i2015-15033-5
![]() |
[24] |
X. J. Li, C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
![]() |
[25] |
C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), 383–406. https://doi.org/10.2478/s13540-012-0028-x doi: 10.2478/s13540-012-0028-x
![]() |
[26] |
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
![]() |
[27] |
F. Y. Song, C. J. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys., 299 (2015), 196–214. https://doi.org/10.1016/j.jcp.2015.07.011 doi: 10.1016/j.jcp.2015.07.011
![]() |
[28] |
M. Ahmadinia, Z. Safari, M. Abbasi, Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion, Appl. Numer. Math., 157 (2020), 602–618. https://doi.org/10.1016/j.apnum.2020.07.015 doi: 10.1016/j.apnum.2020.07.015
![]() |
[29] |
M. Ahmadinia, Z. Safari, Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations, Appl. Numer. Math., 148 (2020), 1–17. https://doi.org/10.1016/j.apnum.2019.08.003 doi: 10.1016/j.apnum.2019.08.003
![]() |
[30] |
Y. Chen, L. Wang, L. Yi, Exponential convergence of hp-discontinuous Galerkin method for nonlinear Caputo fractional differential equations, J. Sci. Comput., 92 (2022), 99. https://doi.org/10.1007/s10915-022-01947-z doi: 10.1007/s10915-022-01947-z
![]() |
[31] |
Y. Du, Y. Liu, H. Li, Z. Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
![]() |
[32] |
L. Guo, Z.B. Wang, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93 (2016), 1665–1682. https://doi.org/10.1080/00207160.2015.1070840 doi: 10.1080/00207160.2015.1070840
![]() |
[33] |
Y. Liu, M. Zhang, H. Li, J. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional sub-diffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
![]() |
[34] |
L. Wei, Y. F. Yang, Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation, J. Comput. Appl. Math., 383 (2021), 113129. https://doi.org/10.1016/j.cam.2020.113129 doi: 10.1016/j.cam.2020.113129
![]() |
[35] |
W. Li, L. Wei, Analysis of local discontinuous Galerkin method for the variable-order subdiffusion equation with the Caputo-Hadamard derivative, Taiwanese J. Math., 28 (2024), 1095–1110. https://doi.org/10.11650/tjm/240801 doi: 10.11650/tjm/240801
![]() |
[36] |
Y. Yang, Y. P. Chen, Y. Q. Huang, H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73 (2017), 1218–1232. https://doi.org/10.1016/j.camwa.2016.08.017 doi: 10.1016/j.camwa.2016.08.017
![]() |
[37] |
N. Wang, J. Wang, Y. Liu, H. Li, Local discontinuous Galerkin method for a nonlocal viscous water wave model, Appl. Numer. Math., 192 (2023), 431–453. https://doi.org/10.1016/j.apnum.2023.07.007 doi: 10.1016/j.apnum.2023.07.007
![]() |
[38] |
L. Wei, W. Li, Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative, Math. Comput. Simul., 188 (2021), 280–290. https://doi.org/10.1016/j.matcom.2021.04.001 doi: 10.1016/j.matcom.2021.04.001
![]() |
[39] |
R. Du, A. A. Alikhanov, Z. Sun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Comput. Math. Appl., 79 (2020), 2952–2972. https://doi.org/10.1016/j.camwa.2020.01.003 doi: 10.1016/j.camwa.2020.01.003
![]() |
[40] |
C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
![]() |
[41] |
Q. Zhang, J. Zhang, S. Jiang, Z. Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comp., 87 (2018), 693–719. https://doi.org/10.1090/mcom/3229 doi: 10.1090/mcom/3229
![]() |
[42] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[43] |
M. Zhang, Y. Liu, H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative, Numer. Meth. Part. D. E., 35 (2019), 1588–1612. https://doi.org/10.1002/num.22366 doi: 10.1002/num.22366
![]() |
[44] |
B. Cockburn, C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: general framework, Math. Comput., 52 (1989), 411–435. https://doi.org/10.2307/2008474 doi: 10.2307/2008474
![]() |
[45] | Y. Cheng, Q. Zhang, H. Wang, Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem, Int. J. Numer. Anal. Model., 15 (2018), 785–810. |