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Abstract: The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation
by incorporating truncation effects within bounded domains, offering a flexible framework for
modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous
Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV
equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient
finite difference scheme approximates the fractional derivatives, followed by the LDG method for
solving the equation. The scheme is proven unconditionally stable and convergent. Numerical
experiments confirm the method’s accuracy, efficiency, and robustness, highlighting its potential for
broader applications in fractional differential equations.
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1. Introduction

Fractional differential equations have gained significant importance in recent years due to their
ability to model complex phenomena such as long-range memory effects, mechanical systems, and
control systems. These equations offer an enhanced framework for describing physical processes that
cannot be effectively captured by integer-order models, especially in challenging scenarios like
algebraic structures and noise reduction [1-3]. In particular, variable-order fractional calculus has
emerged as a powerful tool in many applications, providing a natural mathematical framework for
modeling systems with memory effects [4-9].

Fractional partial differential equations (FPDEs) have demonstrated their capacity to describe
anomalous physical behaviors more accurately than their integer-order counterparts, which has led to
growing interest in their study. However, obtaining analytical solutions to FPDEs remains a
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challenge, particularly when fractional derivatives are involved. As a result, efficient numerical
methods are increasingly being employed, including finite volume (element) methods [10-13], finite
difference methods [14-22], meshless methods [23], spectral methods [24-27], discontinuous
Galerkin methods [28-35], collocation methods [36], etc. In [37], Liu and Li et al. proposed a local
discontinuous Galerkin (LDG) method for solving a nonlocal viscous water wave model,
demonstrated stability, and provided error estimates with numerical validation. Wei and Li [38]
proposed an exact numerical scheme for a class of variable-order fractional diffusion equations,
utilizing the Caputo-Fabrizio fractional derivatives and providing a theoretical analysis using the local
discontinuous Galerkin method. Du et al. [39] introduced various difference schemes for
multi-dimensional variable-order time fractional subdiffusion equations and developed a special-point
approximation for the variable-order time Caputo derivative, proving that the resulting scheme is
uniquely solvable. Li et al. [40] conducted a numerical study on three typical Caputo-type partial
differential equations using both the finite difference method and the local discontinuous Galerkin
finite element method. Zhang [41] developed an efficient numerical scheme for solving the linearized
fractional KdV equation in unbounded domains, utilizing non-local fractional derivatives, and
approximating the solution of the initial-boundary value problem by exponentiating the convolution
kernel.

The fractional Korteweg-de Vries (KdV) equation represents a generalization of the classical KdV
equation by incorporating fractional derivatives, which allow for the modeling of truncation effects
that arise in certain physical systems. Unlike the integer-order derivatives in the classical KdV
equation, which primarily describe local interactions and normal dispersion, fractional derivatives
capture nonlocal behaviors and memory effects. These properties are essential for modeling
phenomena such as anomalous dispersion, where the wave propagation deviates from classical
patterns, and long-range interactions, which are prevalent in complex systems.

In physical terms, the fractional KdV equation is particularly relevant in scenarios where the
underlying dynamics involve nonlocal interactions or where the influence of past states significantly
affects the present behavior. For example, in fluid dynamics, the fractional derivatives can describe
wave propagation in media with complex microstructures. In plasma physics, they account for
anomalous transport and long-range particle interactions. These capabilities make the fractional KdV
equation a powerful tool for extending the applicability of the classical model to a broader range of
real-world problems.

By incorporating these fractional effects, the fractional KdV equation provides a more accurate
representation of systems where standard integer-order models fail to capture the underlying physics.
In order to broaden the applicability of Korteweg-de Vries (KdV) models, it is both meaningful and
challenging to develop high-order numerical schemes for solving the model equation. The
discontinuous Galerkin (DG) method, which is naturally formulated for any desired order of accuracy
in each element, offers flexibility and efficiency in terms of mesh construction and choice of shape
functions. This method has shown great promise in various applications, including the numerical
solution of nonlinear and dispersive wave equations like the KdV equation.

In this paper, we present a fully discrete LDG method based on generalized alternating numerical
fluxes to solve the following fractional Korteweg-de Vries (KdV) equation:

(1.1)

CF D" (x, 1) + e (X, 1) + Af (@), = R(x, 1),  (x,1) € (a,b) X (0, T,
w(x,0) = wo(x), x€la,b].
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The fractional derivative orders, denoted by 6(f) € (0, 1), are time-dependent. The functions f, R,
and @, are assumed to be smooth, while € and A are positive constants. Furthermore, the solutions
explored in this study are either periodic or exhibit compact support.

The Caputo-Fabrizio fractional derivative was proposed by Caputo and Fabrizio [42], which is
defined as

CF y1-6(1) _Lftaw(x,s) o -1
o e = g | T exp[ ol s)]ds, s € (0,1]. (1.2)

The structure of this paper is as follows. In Section 2, some basic notation and mathematical
foundations are introduced. Section 3 mainly introduces discrete methods and constructs the LDG
scheme. Section 4 presents the stability and convergence results of the scheme. In Section 5, we give
numerical experiments to illustrate the accuracy of our proposed format. Finally, we summarize and
discuss our results in Section 6.

2. Preliminaries

We divide the interval Q = [a, b] into subintervals, denoted as J : a = x 1 <Xy <<yl = b.
For j = 1,...,N, we define the interval I; = [xj_l,x.Jrl], and the element size as Ax; = x;,1 — x;_1,
. 2’7t . Jta J=2

where i = max;<;<y Ax; represents the maximum element size.

r

v = tn — tn1. The time

We discretize the time interval [0, 7] uniformly into time steps, with At =
points are given by t, = nAt, forn =0, 1,..., M, which form a mesh in time.

At each boundary x;, 1,

we define the left and right limits of the function u, denoted as u]: , and
2
uj‘,+1 , respectively. Here, u;l refers to the value in the right cell /;,, and u;+l refers to the value in the
2 2 e
left cell /;. We introduce the jump notation:

— ot
ey = wjp) = 15040

The associated discontinuous Galerkin space V;l‘ is defined as:

Vi=1{vePU), xel, j=1,2,...,N},

where PX(I;) represents the space of polynomials of degree k over each interval ;.

In this context, C is a positive constant that may vary depending on the position in the expression.
The notation (-, -), represents the inner product over L*(D), and ||-||p represents the norm in the domain
D. When D = Q, we omit the subscript.
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3. The LDG schemes

We bring the numerical formula for discretizing the Caputo derivative at t = t,,, which is expressed
as [43]:

CF 1y1-6(1) . f " dw(x, ) @) -1
o D, w(x, t,) = @) Jo ac exp (t, —¢)|ds

()
0@) -1

1 & .
= m ;(W(x, t) — o(x, tk_l))(exp[ ) (n— k)]

(0(t,) — Dt
—exp [W(n —k+ 1)])

1 — (™% 0% u(x, cx) o(t,) — 1
+9(tn);ftk_l(§—tk_;) ¢ eXP[ o) (tn—g)]dg

= D" w(x,1,) + R"(x),

where
o 1 Oy
Dzl 6( n)w(x’ t,) = m ; Dk(w(x, t) — w(x, t-1)), 3.1
and
Dy = exp[ o) (n—k)] —expl o) (n—-k+1)].

By further calculation we can obtain

1
D, w(x,1,) =————(D'w(x,1,) — D'w(x, 1
p (X, 1) a —G(tn))At( Z (X, 1,) — Dyw(x, 1)

el (3.2)
+ (D} = D)@, ).
k=1
D7 has the following properties:
0<Di<Dj<---Dy,
(3.3)
D, - Dl <C, VYk<n-1,
and
J J
6(t,) — 1)At 6(t,) — 1)At
Dy = (GXP[—(H - DIl - eXP[—(n)])
22 22 0(t,) ) 4)
_ (6(rn) — DAz (6(z,) — DAt
= eXp[—H(t,,) eXp[—H(t,,) J] < C.

The truncation error in the time direction is

R"(x) :gF D,1 _e(t)w(x, t,) — D,l _emw(x, )
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f (s—1, l‘“““ <) exp[g(;"é_)lun—s)]ds—D}*(’)w(x,rn),

e(r,o £
where ¢ € (i1, ).
Lemma 3.1. [43] When 0 < 6(t) < 1, the truncation error R"(x) satisfies the following estimation:

IR"(x)|l < C(Ary. (3.5)
Rewrite Eq (1.1) as a first-order system of equations:

DV (x, 1) + £4,(x, 1) + Af (@), = R(x, 1),
P = Wy, 3.6)
q = Dx-

@, pi, ¢} € V; represent approximate solutions of @(-,1,), p(-,t,), q(-,t,), respectively. R" =
R(, 1,). Find @}, p}, ¢} € V; such that for the test function v, ¢, x € V}, we have

N
D, f wyvdx — (1 — H(Z,,))Ats(f qpvdx — Z((EZV_)ﬂ% - (;I\ZW )
Q Q i=1
oo
- (1= a8 [ S@dx = Y@y - (@)
Q =
n—1
= Z(W,;;l - D}) f @)vdx + D f @ovdx + (1 - 6(t,))At f R"vdx, (3.7)
k=1 Q

fg qppdx + f Pxdx — Z((ph¢> Vet = (Ph#D) 1) = 0,

LPZX‘ZX"'Ithxdx Z((wh)( )j+1 —(wh)() %)

Q

The fluxes f((w’;)‘, (w@})") are monotonic fluxes. Examples of monotonic fluxes suitable for local
discontinuous Galerkin methods can be found [44]. For example, we can use the Lax-Friedrich flux,
which consists of

1
(CANCADE SU@y)) + f(@)") = W(@})" = (@})7), Ao = max L' @l.

The hat function in the element boundary term resulting from the integral by parts in (3.7) is the
numerical flux. Selecting the appropriate numerical flux will play a key role in theoretical analysis
for the LDG scheme. From the practical aspect, the generalized alternating numerical fluxes have
more application than the traditional numerical fluxes [45]. We consider the following generalized
alternating numerical fluxes:

= §(@h)” + (1 - &)@,
Pi= =8P +8(ph, (3.8)
g} = (1-8)(g}) +d(g)",
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here we consider case § € [0,3)J(3,1]. For 6 = 1, the property about unique existence and
approximation of the generalized Gauss-Radau projection will become complicated.

4. Stability and convergence

To streamline the notation, we focus on the scenario where ‘R = 0 in the numerical analysis.

Theorem 4.1. Assuming periodic or compactly supported boundary conditions, the fully discrete LDG
scheme (3.7) is unconditionally stable. Moreover, the numerical solution @) satisfies the stability
estimate

)l < lafll, n=1,2,...,M. 4.1)

Proof. By selecting the test functions v = @7, ¢ = (1 — 6(t,))Atep}, and y = —(1 — 6(1,))Ateq, in the
discrete scheme, and applying the flux (3.8), we derive the following inequality,

Dllail? + (1 = 6@ )Aredllgillipill = 13l

N
— (1 - 0(t,)Ate fg ah@)edx = ) (g (@) )0y~ ((qﬁ)*(wﬁ)*)j_;]
=1
J N T T
— (1 - 6(t,)A1 fg F@)@pdx = (F@)@) )., - (f(WZ)(WZY)j_é]
j=1

N
+ (1 - 01)Ate fg pz<pz>xdx—Z((pﬁ)*(pzr)ﬁ;—((pzr(pz)*)j_;]
=1

N
+ (1 = 0(t,)Ate fg @h(g)edx = ) (@) (@) )0 —((wzr(qz)*),-_;]
j=1

n—1
k 0
YRR Al AR AHIATTEAT
k=1

Reorganizing, we obtain:

Dl@”|? + (1 = 6(1,))AtAF (@)

N
+ (0 = 0 DAS( (T, P a) 111 = (o P10

=1

- O(@}, pj» 4j);-1) 42

N
+ (1 = 6(tn)Ate [ f PP = > (R P )0y = (P () j;)
n—1
< Z(DZ+1 = DYllwllll=;ll + Dl
k=1
Here, the nonlinear terms are defined as:

N
F(@}) = - [ f F@p@dx = > (@)@} ), - (f@)(wzr)j_;],

Q ]:1
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and
1
W@, Py dy) = =@ (@) + (@) @) + 5@ = P () + (@) (q)",
1
O(@),, P, q) = (@) (g)" — ()" (@))" - 5((1)2)*)2 + (P (P
Then we find:
N n—1
1 -6(t,)Ate Y . " , ;
D}l + Z % [Pl < ]Z(Dm - DYl@illil;l + Dillaylllall.  (4.3)
I= =1

For n = 1, the inequality becomes:

N
(1 =6(t)))Ate 2
Dill@ilf + ), ———— |ni,

10 1
. < Dyll@|lll@l.
2 -3

=1
Using the inequality
1 1
fw,gw}ldx < Ellwgll2 + EHW},HZ,
Q
we have:

1 1
Dl < b3l + Jiw)le).

which implies:
@l < NIl
Suppose [|@}|| < ||w2|| holds form =1,2,...,n— 1. For n, from (4.3):

n—1

2 k 0
Dyl@yIP < > (D}, - Dpliwilliall + Dillwslliz)|
k=1

n—1
<| D> Dk, - DY) + D} |l
k=1

0
= Dy ll@lllall.

Dividing through by D!, we obtain:
Il < [l

By induction, the unconditional stability is established. O

Next, we will derive the error estimates for the equation f(#) = u under the assumption of linearity,
employing (3.8) as the chosen flux formulation.

We begin by recalling some fundamental results. For any periodic function w defined on [a, b],
the generalized Gauss-Radau projection [45], denoted by Psw, is the unique element in V). Let the
projection error be w’ = Psw — w. When 6 # %, the error satisfies the following conditions for
j=12,...,N:

f wvdx=0, VYvePT'(I), and (@), =0.
I I

This result leads to the following lemma, as proven in [45].
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Lemma 4.1. Let 6 # % If w € H*"[a, b], the following inequality holds:
1 e min s
el + A2 [l 2,y < CA™M Do),

where C > 0 is a constant independent of h and w. Here, '), represents the set of boundary points of
all elements I;, and

L& >
Nz, = (5 > |z, + ((af)‘)li;]) .
i=1
With this projection result established, we now proceed to the main error analysis.

Theorem 4.2. Let w(x,t,) be the exact solution to problem (1.1), where w(x,t) € H"'(D) and 0 <
m < k + 1. Suppose @), is the numerical solution obtained via the fully discrete LDG scheme (3.7).
Then, the following error estimate holds:

l(x, 1) — Dyl < C (Ar + (A~ H* + (A2 142,
where C is a positive constant depending on u and T.

Proof. To establish this result, we introduce the notation ¢ + € = 1 and decompose the error as follows:

€y = w(xa tn) - wZ = g:; - nl’lw’ (:; = P(Senw-’ T]nw = P(S'ZD-(X, tn) - W(X, tn)’

n_

; = p(x,1,) = PZ = {p 77;, gz = Pee’;a 772 = Pep(x, 1) — p(x, 1),
0= aCat) =gy =45 =1, Ly =Py, 10, =Peq(x,ty) — q(x, ).

The terms 7, 17,, and 1} are estimated using Lemma 4.1. Substituting these estimates into the
scheme (3.7), the result follows by applying the standard stability and consistency arguments.
Based on the flux (3.8), the following error equation could be obtained:

N
D} [ etvdx (1 = ote e [ ehwdr= Y (@0, = (€)' v),)
i=1
R J
~ (1= 008 [ = Y (V) = (), )
=1
- > (D, =D} f évdx — D/ f Pvdx + (1 — 0(1,)) At f R'(x)vdx (4.4)
Q Q Q
N
L Ry Y (CAR SN G
i=1
' N
o [ e [ e Y ()¢ - (@6 ) =0
=1
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Substituting (4.2) into (4.4), we obtain
f Lovdx — (1 = 6(1,))Ats( fQ gvadx — Z(((é) V)t = ((G)V5)21)
= (1 = 8t ) ALA( fQ yvadx — Z (ORI ((HRWIND)
j=1
N]
+ fQ {yddx + fQ §Z¢xdx—Z(((§Z)+¢‘),-+%—(({;)W),-_%)
j=1
jN
o [ gedxs [ goadv= Y (@ - @ren )
j=1
_Z(Dk+1 D}) f {vdx + D} f Ovdx — (1 - 6(t,))At f R'(x)vdx
+ D), f mvdx — (1 = 6(1,)) Are( f Mgvadx — Z(((anv‘)ﬁ,—((nZ)*v*),-_%))
— (1 = 0t AL fg Mvadx — Z(((”Z)_V_)ﬂ% = () ™v),2))
j=1
_Z(Dkﬂ DZ)fn’,jvdx—D'{fngvdx
Q Q
N
R R Y AR AN CA S
j=1

N
+ fg ppdx + fQ Mo = ) (O1) X )0y = (Gl XD),op)-
j=1

4.5)

Using the projection property (4.1) and substituting the test functions v = {7, ¢ = (1 — 6(z,))AreZ},, and

x = —(1 —=6(t,)Atel i into (4.5), we derive the equality:

e(rn))mg , (1= 61 S
D; [ (@ydx+ Z[( R

= Z(Dk+1 D) f figidx + D, f Qzidx — (1 - 6(t,)Ar f R'(x)(dx

N
+D, f Mudx+ (L= 6)Ate Y [l @™ = @],

J=1

—Z(Dk+1 DY) f m&udx = Df f Mududx
Q Q

(4.6)
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N
= (L =6Ate Y [ @) = @),

=1

Considering that £° = 0, we simplify the above to:

womn (L= 0 )AtE A, (1 - 0t ))AIA &
DIzl + —— Z‘[gp]i_é e Z‘[gw]?_é
J= j=

n—1

M

(D},, — D} f Eetdx — (1 - 6(t,))At f R'(x){dx
Q Q

N

W, )+ (1 =Bt ) () (@) = () (@),

=

k=1

4.7)

N

— (1= 0e)Ats [ @) = e @],

=1

10
2

where »
n ny _ n n o on n k on n 0 «n
\P(nm’ gu) - Dn f nw{udx - Z(Dk+l Dk) f nwé{wd'x - Dl fnm'gwdx'
Q =1 Q Q

Applying the Cauchy—Schwarz inequality to the terms involving products, we have:

wimy L (L= 0)ALE v (1= 0L DAL &,
DHCGIP + =" Zl[z,,]i_é e Z;Mw]f—é
J= j=

n—1

(D = DOICEINEAI + (1 = 0 )ALIR 1 (4.8)
k=1 N
+ (=0t Y [ 1251 = G714, + CH Iz

=

[N

Using the inequality ab < ka® + ﬁbz with appropriate constants, we derive:

DIZ I

2

D, N ; I+

< G+ 5 (kZ;(DkH DIl + (1 = B DAR'| + CHE 1] 4.9)
1 - 6(1,)Ate <

# CETDEE N [y + ]

=1
By multiplying both sides of the inequality by 2D”, we arrive at the following expression:

n—1 2

(Dplige ) S[ (D k+1—DZ)||§1';||+(1—G(In))AlIIR"IHChk”]

k=1

N
+ (1 - 00,)A6D) Y. [ @) + () )2]
j=1

j-

=
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Using the inequality a® + b* < (a + b)?, we obtain:

n—1
DUIZAI < > (D, = DICEN + (1 = 0t)AdIR"| + CH!
k=1

N

+ 4(1 - 6(tn))At6DZZ [((nz)+)2 + ((172)+)2]. X

j=1 J=3

From Lemma 3.1, we know that ||R"|| < C(Af)? and that (1 — 6(z,,))At = O(Af) = CAt.

Assume the following estimate holds:
12511 < Cn (A0 + B!+ (AnHHE)

When n = 1, we have:
1
DIIIZLIl < C(A? + CH! + \C(AD) - (CH3),
which simplifies to:
LI < C((A07 + B!+ (AniKk3).

Now assume that for j = 1,2,...,n — 1, the following inequality holds:
16211 < Cj ((At)2 + iy (A;)%h’ﬁ%)_
Substituting (4.12) and (4.13) into (4.10), we find:
DI < Dt (407 1+ )
+ C(ALY + CH*' 4+ C(ADTHM .
Dividing through by D, we obtain:
I8o!l < Cn ((At)2 + W+ (At)%hk%).
Since jAt < nAt = T, we conclude:
I8 ]| < CnAt (At + (A)TTH ¢ (At)_%h/ﬁ%)
= CT (At + (A~ H" + (Ary hk+%)
<C (At + (ADTHM 4 (At)—%hh%) ‘

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Combining the triangle inequality and the projection property (4.1), we establish that Theorem 4.2

holds.

5. Numerical experiment

O

In this section, we analyze the effectiveness of the proposed scheme for solving the Korteweg-de
Vries (KdV) equations. To illustrate the numerical performance, we consider the following example,

which is defined with periodic boundary conditions and specific initial values:

{ CED; 0w (x, 1) + £ (X, 1) + Af (@), = R(x,1), (x,0) € (0, 1) x (0, 1],

w(x,0) = sin(2rx), x€[0,1],

5.1

AIMS Mathematics Volume 10, Issue 1, 1367-1383.
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where the parameters are given as € = 1, 4 = 2, and the nonlinear term is f(w) = %wz. The source
term is defined as

R(x, 1) = exp(t) (1 - exp( )) sin(27x) — 87° exp(t) cos(2mx) + 2mexp(2t) sin(4mx).

6(7)

By substituting into the governing equation, it can be verified that the exact solution is given by:
w(x, 1) = € sin(2mx).

This example provides a benchmark for evaluating the accuracy and stability of the numerical scheme.
The exact solution serves as a reference to measure the error of the approximate solutions obtained
using the proposed method.

The convergence order s is defined as the rate at which the numerical error E(h) decreases when the
mesh size h is reduced. Mathematically, the convergence order can be expressed as:

E(h
i)

log( 1)

The convergence results of the proposed numerical scheme are presented in terms of both the L™ norm
and the L? norm of the error. For a uniform mesh with size & = %, the numerical errors and their
corresponding convergence rates are summarized in Tables 1 and 2 for k = 0, k = 1, and k = 2,
respectively. These results demonstrate the effectiveness of the method in achieving the expected
convergence rates.

From the data presented in the tables, it is evident that the scheme attains the optimal convergence
rates when using piecewise P* polynomials for the approximation. This aligns with the theoretical
predictions and confirms the accuracy of the implementation.

Table 1. Accuracy evaluation of the scheme using generalized numerical fluxes on uniform
meshes with M = 10° and T = 1.

5 0(1) P* N L*-error order L*®-error order
5 2.234154315165418e-02 - 3.325654564571658e-02 -
10 1.310147131401608e-02 0.77 1.896893029387774e-02 0.81
P° 15 9.282020004926384e-03 0.85 1.360341690703731e-02 0.82
20 7.062373799575516e-03 0.93 1.047017059471873e-02 0.91
5 5.258565848574935e-03 - 2.874894543454385e-02 -
0=02 61 = 1+Te[ 10 1.489336127404343e-03 1.82 8.198938455302200e-03 1.81
P! 15 7.149366246399207e-04 1.81 3.748879632103182¢-03 1.93
20 4.103323750214706e-04 193 2.151640621132365e-03 1.93
5 2.835443844384836e-03 - 4.895443548645634e-03 -
10 4.156884546598665e-04 2.77 6.980680466721370e-04 2.81
P? 15 1.298332860362948e-04 2.87 2.215947648195558e-04 2.83

20 5.751874802760417e-05 2.83 9.732730754713998e-05 2.86
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Table 2. Accuracy evaluation of the scheme using generalized numerical fluxes on uniform
meshes with M = 10° and T = 1.

5 0(1) P* N L’-error order L*®-error order
5 3.109846667509167e-02 - 3.935647665517568e-02 -

10 1.701542810070992e-02 0.87 2.389321631126370e-02 0.72

P% 15 1.200616748520694e-02 0.86 1.672300451128631e-02 0.88

20 9.455951718346527e-03 0.83 1.279738636426584¢e-02 0.93
5 6.217652186554856e-03 - 3.163451745754647e-02 -

6=0.7 6@t) = @ 10 1.887360369465646e-03 1.72 9.536287193882389¢-03 1.73
P! 15 9.434932089672982e-04 1.71 4.540799413583421e-03 1.83
20 5.493561031605326e-04 1.88 2.621194999472281e-03 1.91
S5 3.164544654645469e-03 - 5.213124481473423e-03 -
10 4.972343693951145e-04 2.67 7.589876467516313e-04 2.78
P? 15 1.617291679904699¢-04 2.77 2.360977679519969¢-04 2.88
20 7.164926303842763e-05 2.83 1.036972154616056e-04 2.86

From the data presented in the tables, it is evident that the scheme attains the optimal convergence
rates when using piecewise P polynomials for the approximation. This aligns with the theoretical
predictions and confirms the accuracy of the implementation.

These findings highlight the flexibility and robustness of the method across different polynomial
orders, confirming its capability to deliver high-order accuracy for smooth solutions. The numerical
results also reinforce the theoretical claims regarding the convergence properties of the scheme.

6. Conclusions

This paper investigates the solution of a class of time-fractional KdV equations using the local
discontinuous Galerkin (LDG) method under the framework of the Caputo-Fabrizio fractional
derivative. We provide a rigorous analysis of the proposed scheme, including its stability and error
estimates, ensuring a solid theoretical foundation. Furthermore, numerical experiments are conducted
to validate the effectiveness and demonstrate the robust numerical performance of the method.

For future work, it would be valuable to explore the extension of this scheme to more complex
scenarios, such as two-dimensional or high-dimensional problems. Additionally, investigating its
application to other types of fractional differential equations or real-world problems in fields like fluid
dynamics, wave propagation, and material science could further establish the versatility and
practicality of the proposed scheme.
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