Research article Special Issues

Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials

  • Received: 08 October 2023 Revised: 04 December 2023 Accepted: 13 December 2023 Published: 20 December 2023
  • MSC : 65XX, 65Mxx, 33C45

  • In this article, we propose two numerical schemes for solving the time-fractional heat equation (TFHE). The proposed methods are based on applying the collocation and tau spectral methods. We introduce and employ a new set of basis functions: The unified Chebyshev polynomials (UCPs) of the first and second kinds. We establish some new theoretical results regarding the new UCPs. We employ these results to derive the proposed algorithms and analyze the convergence of the proposed double expansion. Furthermore, we compute specific integer and fractional derivatives of the UCPs in terms of their original UCPs. The derivation of these derivatives will be the fundamental key to deriving the proposed algorithms. We present some examples to verify the efficiency and applicability of the proposed algorithms.

    Citation: Waleed Mohamed Abd-Elhameed, Hany Mostafa Ahmed. Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials[J]. AIMS Mathematics, 2024, 9(1): 2137-2166. doi: 10.3934/math.2024107

    Related Papers:

  • In this article, we propose two numerical schemes for solving the time-fractional heat equation (TFHE). The proposed methods are based on applying the collocation and tau spectral methods. We introduce and employ a new set of basis functions: The unified Chebyshev polynomials (UCPs) of the first and second kinds. We establish some new theoretical results regarding the new UCPs. We employ these results to derive the proposed algorithms and analyze the convergence of the proposed double expansion. Furthermore, we compute specific integer and fractional derivatives of the UCPs in terms of their original UCPs. The derivation of these derivatives will be the fundamental key to deriving the proposed algorithms. We present some examples to verify the efficiency and applicability of the proposed algorithms.



    加载中


    [1] Y. H. Youssri, W. M. Abd-Elhameed, H. M. Ahmed, New fractional derivative expression of the shifted third-kind Chebyshev polynomials: Application to a type of nonlinear fractional pantograph differential equations, J. Funct. Space., 2022 (2022). https://doi.org/10.1155/2022/3966135
    [2] H. M. Ahmed, Numerical solutions for singular Lane-Emden equations using shifted Chebyshev polynomials of the first kind, Contemp. Math., 4 (2023), 132–149. https://doi.org/10.37256/cm.4120232254 doi: 10.37256/cm.4120232254
    [3] E. H Doha, W. M Abd-Elhameed, M. A. Bassuony, On the coefficients of differentiated expansions and derivatives of Chebyshev polynomials of the third and fourth kinds, Acta Math. Sci., 35 (2015), 326–338. https://doi.org/10.1016/s0252-9602(15)60004-2 doi: 10.1016/s0252-9602(15)60004-2
    [4] W. M Abd-Elhameed, H. M. Ahmed, Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler third-order-type equations, Internat. J. Modern Phys. C, 33 (2022), 2250061. https://doi.org/10.1142/s0129183122500619 doi: 10.1142/s0129183122500619
    [5] A. T. Dincel, S. N. T. Polat, Fourth kind Chebyshev wavelet method for the solution of multi-term variable order fractional differential equations, Eng. Comput., 39 (2022), 1274–1287. https://doi.org/10.1108/ec-04-2021-0211 doi: 10.1108/ec-04-2021-0211
    [6] R. Magin, Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.10
    [7] V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011.
    [8] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2022.
    [9] S. Das, I. Pan, Fractional order signal processing: Introductory concepts and applications, Springer Science & Business Media, 2011.
    [10] S. Momani, Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488–494. https://doi.org/10.1016/j.amc.2005.11.025 doi: 10.1016/j.amc.2005.11.025
    [11] S. Abbasbandy, S. Kazem, M. S. Alhuthali, H. H. Alsulami, Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation, Appl. Math. Comput., 266 (2015), 31–40. https://doi.org/10.1016/j.amc.2015.05.003 doi: 10.1016/j.amc.2015.05.003
    [12] H. Dehestani, Y. Ordokhani, M. Razzaghi, Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations, Math. Method. Appl. Sci., 42 (2019), 7296–7313. https://doi.org/10.1002/mma.5840 doi: 10.1002/mma.5840
    [13] T. Akram, M. Abbas, M. B. Riaz, A. I. Ismail, N. M. Ali, An efficient numerical technique for solving time fractional Burgers equation, Alex. Eng. J., 59 (2020), 2201–2220. https://doi.org/10.1016/j.aej.2020.01.048 doi: 10.1016/j.aej.2020.01.048
    [14] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [15] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/s0218348x22400515 doi: 10.1142/s0218348x22400515
    [16] M. Shakeel, I. Hussain, H. Ahmad, I. Ahmad, P. Thounthong, Y. F. Zhang, Meshless technique for the solution of time-fractional partial differential equations having real-world applications, J. Funct. Space., 2020 (2020). https://doi.org/10.1155/2020/8898309
    [17] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [18] K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3+ 1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Appl. Math. Nonlinear Sci., 4 (2019), 289–304. https://doi.org/10.2478/amns.2019.2.00026 doi: 10.2478/amns.2019.2.00026
    [19] Z. J. Fu, L. W. Yang, Q. Xi, C. S. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023
    [20] Q. Xi, Z. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass Transf., 180 (2021), 121778. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778 doi: 10.1016/j.ijheatmasstransfer.2021.121778
    [21] W. H. Luo, T. Z. Huang, G. C. Wu, X. M. Gu, Quadratic spline collocation method for the time fractional subdiffusion equation, Appl. Math. Comput., 276 (2016), 252–265. https://doi.org/10.1016/j.amc.2015.12.020 doi: 10.1016/j.amc.2015.12.020
    [22] W. H. Luo, C. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme for the Caputo derivative with applications to fractional diffusion problems, Numer. Funct. Anal. Optim., 39 (2018), 600–622. https://doi.org/10.1080/01630563.2017.1402346 doi: 10.1080/01630563.2017.1402346
    [23] W. H. Luo, X. M. Guo, L. Yang, J. Meng, A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation, Math. Comput. Simulat., 182 (2021), 1–24. https://doi.org/10.1016/j.matcom.2020.10.016 doi: 10.1016/j.matcom.2020.10.016
    [24] I. Karatay, S. R. Bayramoğlu, A. Şahin, Implicit difference approximation for the time fractional heat equation with the nonlocal condition, Appl. Numer. Math., 61 (2011), 1281–1288. https://doi.org/10.1016/j.apnum.2011.08.007 doi: 10.1016/j.apnum.2011.08.007
    [25] E. M. Abdelghany, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, A. G. Atta, A tau approach for solving time-fractional heat equation based on the shifted sixth-kind Chebyshev polynomials, Symmetry, 15 (2023), 594. https://doi.org/10.3390/sym15030594 doi: 10.3390/sym15030594
    [26] M. El-Gamel, M. El-Hady, A fast collocation algorithm for solving the time fractional heat equation, SeMA J., 78 (2021), 501–513. https://doi.org/10.1007/s40324-021-00245-2 doi: 10.1007/s40324-021-00245-2
    [27] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [28] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.oa-2016-0136 doi: 10.4208/cicp.oa-2016-0136
    [29] J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral methods for time-dependent problems, volume 21, Cambridge University Press, 2007.
    [30] J. Shen, T. Tang, L. L. Wang, Spectral methods: Algorithms, analysis and applications, volume 41, Springer Science & Business Media, 2011.
    [31] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Springer-Verlag, 1988.
    [32] J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001.
    [33] L. N. Trefethen, Spectral methods in MATLAB, volume 10, SIAM, 2000.
    [34] W. M. Abd-Elhameed, M. M. Alsuyuti, Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials, Fractal Fract., 7 (2023), 74. https://doi.org/10.3390/fractalfract7010074 doi: 10.3390/fractalfract7010074
    [35] W. M. Abd-Elhameed, A. M. Alkenedri, Spectral solutions of linear and nonlinear BVPs using certain Jacobi polynomials generalizing third-and fourth-kinds of Chebyshev polynomials, CMES Comput. Model. Eng. Sci., 126 (2021), 955–989. https://doi.org/10.32604/cmes.2021.013603 doi: 10.32604/cmes.2021.013603
    [36] Q. M. Al-Mdallal, On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems, Chaos Soliton. Fract., 116 (2018), 261–267. https://doi.org/10.1016/j.chaos.2018.09.032 doi: 10.1016/j.chaos.2018.09.032
    [37] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, B. I. Bayoumi, D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Method. Appl. Sci., 42 (2019), 1389–1412. https://doi.org/10.1002/mma.5431 doi: 10.1002/mma.5431
    [38] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608
    [39] F. Ghoreishi, S. Yazdani, An extension of the spectral tau method for numerical solution of multi-order fractional differential equations with convergence analysis, Comput. Math. Appl., 61 (2011), 30–43. https://doi.org/10.1016/j.camwa.2010.10.027 doi: 10.1016/j.camwa.2010.10.027
    [40] P. Mokhtary, F. Ghoreishi, H. M. Srivastava, The Müntz-Legendre Tau method for fractional differential equations, Appl. Math. Model., 40 (2016), 671–684. https://doi.org/10.1016/j.apm.2015.06.014 doi: 10.1016/j.apm.2015.06.014
    [41] W. M. Abd-Elhameed, Novel expressions for the derivatives of sixth kind Chebyshev polynomials: Spectral solution of the non-linear one-dimensional Burgers' equation, Fractal Fract., 5 (2021), 53. https://doi.org/10.3390/fractalfract5020053 doi: 10.3390/fractalfract5020053
    [42] M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations, Comput. Appl. Math., 41 (2022), 1–21. https://doi.org/10.1007/s40314-021-01702-4 doi: 10.1007/s40314-021-01702-4
    [43] C. Liu, Z. Yu, X. Zhang, B. Wu, An implicit wavelet collocation method for variable coefficients space fractional advection-diffusion equations, Appl. Numer. Math., 177 (2022), 93–110. https://doi.org/10.1016/j.apnum.2022.03.007 doi: 10.1016/j.apnum.2022.03.007
    [44] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [45] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC Press, 2002.
    [46] A. H. Bhrawy, M. A. Alghamdi, A Legendre Tau-spectral method for solving time-fractional heat equation with nonlocal conditions, Sci. World J., 2014 (2014), 706296. https://doi.org/10.1155/2014/706296 doi: 10.1155/2014/706296
    [47] W. Koepf, Hypergeometric summation, 2 Eds., Springer Universitext Series, 2014, Available from: http://www.hypergeometric-summation.org.
    [48] G. E. Andrews, R. Askey, R. Roy, Special functions, volume 71, Cambridge University Press, 1999.
    [49] Y. L. Zhao, X. M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021), 11. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(927) PDF downloads(58) Cited by(7)

Article outline

Figures and Tables

Figures(10)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog