In the setting of $ 2 $-uniformly convex Banach spaces, we prove the existence of solutions for a variant of the implicit state-dependent convex sweeping processes. Our approach is based on a differential equation associated with the generalized projection operator.
Citation: Messaoud Bounkhel, Bushra R. Al-sinan. A differential equation approach for solving implicit state-dependent convex sweeping processes in Banach spaces[J]. AIMS Mathematics, 2024, 9(1): 2123-2136. doi: 10.3934/math.2024106
In the setting of $ 2 $-uniformly convex Banach spaces, we prove the existence of solutions for a variant of the implicit state-dependent convex sweeping processes. Our approach is based on a differential equation associated with the generalized projection operator.
[1] | A. Jourani, E. Vilches, A differential equation approach to implicit sweeping processes, J. Differ. Equations, 266 (2019), 5168–5184. https://doi.org/10.1016/j.jde.2018.10.024 doi: 10.1016/j.jde.2018.10.024 |
[2] | M. Bounkhel, Implicit differential inclusions in reflexive smooth Banach spaces, Proc. Amer. Math. Soc., 140 (2012), 2767–2782. https://doi.org/10.1090/S0002-9939-2011-11122-5 doi: 10.1090/S0002-9939-2011-11122-5 |
[3] | G. Wenzel, On a class of implicit differential inclusions, J. Differ. Equations, 63 (1986), 162–182. https://doi.org/10.1016/0022-0396(86)90046-X doi: 10.1016/0022-0396(86)90046-X |
[4] | Z. Ding, On a class of implicit differential inclusions, Proc. Amer. Math. Soc., 124 (1996), 745–749. |
[5] | Y. Alber, I. Ryazantseva, Nonlinear Ill-posed problems of monotone type, Springer Dordrecht, 2006. https://doi.org/10.1007/1-4020-4396-1 |
[6] | R. Deville, G. Godefroy, V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, UK, 1993. |
[7] | K. Ball, E. A. Carlen, E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., 115 (1994), 463–482. https://doi.org/10.1007/BF01231769 doi: 10.1007/BF01231769 |
[8] | W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, 2000. |
[9] | Y. Alber, Generalized projection operators in Banach spaces: properties and applications, Funct. Differ. Equ., 1 (1994), 1–21. |
[10] | M. Bounkhel, M. Bachar, Generalised-prox-regularity in reflexive smooth Banach spaces with smooth dual norm, J. Math. Anal. Appl., 475 (2019), 699–729. https://doi.org/10.1016/j.jmaa.2019.02.064 doi: 10.1016/j.jmaa.2019.02.064 |
[11] | J. Gwinner, B. Jadamba, A. A. Khan, F. Raciti, Uncertainty quantification in variational inequalities, 1 Ed., New York: Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781315228969 |
[12] | A. A. Khan, J. Li, S. Reich, Generalized projections on general Banach spaces, J. Nonlinear Convex Anal., 24 (2023), 1079–1112. |
[13] | G. Dinca, On the Kuratowski measure of noncompactness for duality mappings, Topol. Method. Nonlinear Anal., J. Juliusz Schauder Univ. Cent., 40 (2012), 181–187. |
[14] | G. Dinca, Duality mappings on infinite dimensional reflexive and smooth Banach spaces are not compact, Bull. Acad. R. Belg., 15 (2004), 33–40. |
[15] | J. M. Ayerbe Toledano, T. Dominguez Benavides, G. López Acedo, Measures of noncompactness in metric fixed point theory, Birkhäuser Basel, 1997. https://doi.org/10.1007/978-3-0348-8920-9 |
[16] | M. Furi, M. Martelli, A. Vignoli, Contributions to the spectral theory of nonlinear operators in Banach spaces, Ann. Mat. Pura Appl., 118 (1978), 229–294. https://doi.org/10.1007/BF02415132 doi: 10.1007/BF02415132 |