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1. Introduction

In this paper, we aim to study the following variant of implicit state-dependent convex sweeping
process in Banach spaces{

J(ẋ(t)) ∈ −NC(t,x(t))(BJ[B∗J(ẋ(t)) + h(t, x(t))]) + g(t, x(t)) a.e. I,
x(0) = x0 ∈ X,

(1.1)

where I := [0,T ](T > 0), C : I × X → X is a set-valued mapping defined from I to a given reflexive
Banach space X with nonempty, closed and convex values, B : X∗ → X is a bounded linear operator,
B∗ : X∗ → X is the adjoint operator of B, J : X → X∗ is the normalized duality mapping, and
g : I×X → X∗, h : I×X → X are two given single-valued mappings. Here, NS (·) stands for the convex
normal cone associated to a given closed convex set S . First, we start with the following special cases
motivating the study of the proposed problem (1.1).
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(1) Assume that X is a Hilbert space. In this case the duality mapping J reduces to the identity IdX

and X = X∗. Hence, problem (1.1) becomes{
ẋ(t) ∈ −NC(t,x(t))(Aẋ(t) + Bh(t, x(t))) + g(t, x(t)) a.e. on I,
x(0) = x0 ∈ X,

where A = BB∗ is a linear bounded self-adjoint operator on the Hilbert space X. This problem
has been proposed and studied recently in [1].

(2) If X is a Banach space and h = 0, problem (1.1) becomes{
J(ẋ(t)) ∈ −NC(t,x(t))(Aẋ(t)) + g(t, x(t)) a.e. on I,
x(0) = x0 ∈ X,

where A = BJB∗J is a nonlinear bounded operator from the Banach space X to itself. This implicit
state-dependent convex sweeping process problem seems to be new in the Banach space setting.
A different variant of implicit sweeping process with A is the identity mapping on X, has been
proposed and studied in [2].

(3) If X is a Hilbert space, h = 0, A is the identity operator on X, and C is not state-dependent, then
the problem (1.1) becomes {

ẋ(t) ∈ −NC(t)(ẋ(t)) + g(t, x(t)) a.e. on I,
x(0) = x0 ∈ X.

This implicit convex sweeping process problem has been studied in [2].

For other types of implicit differential inclusions we refer to [3, 4] and their references.
This paper is organized as follows. In Section 2, we recall some definitions and results that will be

needed in the paper. In Section 3, we prove our main existence theorem. We end Section 3 with an
illustrative application of our abstract results to differential variational inequalities on Banach spaces.

2. Preliminaries

Throughout the paper, we will use X to refer to a Banach space, while X∗ will denote its topological
dual space. The closed unit balls in X and X∗ will be denoted by B and B∗, respectively. For definitions
and properties of q-uniformly convex and p-uniformly smooth Banach spaces, please refer to [5,6]. As
example of these two classes of Banach spaces, we state all the spaces lp,Cp,W p,m, Lp for p ∈ (1,∞).
For the proof of the uniform convexity and uniform smoothness of the spaces lp, Lp,W p,m we refer for
instance to Remark 1.6.9 in [5] and for the Schatten trace ideals Cp we refer to [7].

Let us also revisit the definition of the normalized duality mapping J : X⇒X∗ which is expressed as
follows:

J(x) = { j(x) ∈ X∗ : 〈 j(x), x〉 = ‖x‖2 = ‖ j(x)‖2}.

Numerous properties pertaining to the normalized duality mapping J can be found in [5, 8].
Additionally, we would like to revisit the definition of the functional: V : X∗ × X → R

V(x∗, x) = ‖x∗‖2 − 2〈x∗, x〉 + ‖x‖2.

We can define the generalized projection of x∗ ∈ X∗ onto S by means of the functional V using the
following expression.

AIMS Mathematics Volume 9, Issue 1, 2123–2136.



2125

Definition 2.1. Suppose we have a nonempty subset S of X and an element x∗ ∈ X∗. We define a
generalised projection of x∗ onto S (see [9]) as any point x̄ ∈ S that satisfies the following inequality:

V(x∗, x̄) = inf
x∈S

V(x∗, x),

In such a scenario, we refer to x̄ as the generalized projection of x∗ onto S . The set of all points that
satisfy this condition is denoted by πS (x∗).

We refer to the references [2, 9–12] for more properties and applications of the generalized
projection πS on closed convex and nonconvex sets. Let us also recall the definition of convex normal
cones:

N(S ; x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ S }.

3. Existence of solutions for implicit sweeping process

In this section, we present an existence result for the proposed implicit sweeping process (1.1). Our
approach consists in tranforming the differetial inclusion (1.1) into a differential equation. Indeed, we
show that the differential inclusion (1.1) is equivalent to the following differential equation: ẋ(t) = (B∗J)−1

[
J−1πB−1C(t,x(t))

(
B∗g(t, x(t)) + h(t, x(t))

)
− h(t, x(t))

]
a.e. I,

x(0) = x0 ∈ X.
(3.1)

Since the right hand side of this differential equation may have set-values in general, we need the
following assumptions on the space X, operator B, and the set-valued mapping C: We check the well
definedness of (3.1) under the following assumptions on B, g, h and C. We need J−1 and the generalized
projection on B−1C(t, x(t)) to be single-valued, which can be ensured by assuming that the Banach
space X to be strictly convex and that the values B−1C(t, x(t)) to be convex. Consequently, our proposed
differential equation (3.1) is well defined. To start our study, we need the following assumptions on h,
g, B, and C:

(A1) For all t ∈ I and all x ∈ x0 + rB

max{‖h(t, x)‖, ‖g(t, x)‖} ≤ M1;

(A2) For all t ∈ I and all x, y ∈ x0 + rB

max{‖h(t, x) − h(t, y)‖, ‖g(t, x) − g(t, y)‖} ≤ M2‖x − y‖;

(A3) B : X∗ → X is a bounded linear operator;
(A4) For all t ∈ I and for all x, y ∈ X

H(C(t, x),C(t, y)) := sup
z∈X
|dC(t,x)(z) − dC(t,y)(z)| ≤ K1‖x − y‖;

(A5) There exists k ∈ C(I) such that for every t ∈ I, every l > 0 and every bounded set A ⊂ X

γ(C(t, A) ∩ lB) ≤ k(t)γ(A),

where γ is either the Kuratowski or the Hausdorff measure of noncompactness on X;
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(A6) For all x ∈ X, the set-valued mapping (t, x) 7→ C(t, x) is measurable and there exists µ ∈ C(I) such
that for all t ∈ I and all x ∈ X

dC(t,x)(0) ≤ µ(t)(‖x‖ + 1).

We state the following important result on generalised projection on closed convex sets in q-
uniformly convex Banach spaces. It is presented and proved in Theorem 4.5 in [10].

Proposition 3.1. Let S be a nonempty closed convex subset of q-uniformly convex Banach space X.
Then for any M > 0, there exists LM > 0 such that ∀x∗ ∈ MB∗, the generalised projection of x∗ on S is
singleton and

‖πS (x∗1) − πS (x∗2)‖ ≤ LM‖x∗1 − x∗2‖
1

q−1 , ∀x∗1, x
∗
2 ∈ MB∗.

We need some important results that we gather in the following proposition.

Proposition 3.2. Let X be a Banach space.

(1) If X is q-uniformly convex, then for any α > 0 there exists some constant Kα > 0 such that

〈J(x) − J(y); x − y〉 ≥ Kα‖x − y‖q, ∀x, y ∈ αB;

(2) If X is p-uniformly smooth, then the duality mapping J is Holder continuous with constant p − 1
on bounded sets, that is, for any α > 0 there exists some constant K′α > 0 such that

‖J(x) − J(y)‖ ≤ K′α‖x − y‖p−1, ∀x, y ∈ αB;

(3) If X is a reflexive smooth Banach space, S be closed convex set in X, and x̄ ∈ S , then

x∗ ∈ N(S ; x̄) ⇔ ∃α > 0, such that x̄ ∈ πS (J(x̄) + αx∗),
⇔ ∀α > 0, such that x̄ ∈ πS (J(x̄) + αx∗).

We also need to prove the following important result on the generalized projection on closed convex
subsets of q-uniformly convex Banach spaces.

Proposition 3.3. Let S 1 and S 2 be two nonempty closed convex subsets of q-uniformly convex Banach
space X. Then for any x∗ ∈ X∗ we have

‖πS 1(x∗) − πS 2(x∗)‖ ≤
[
2‖x∗‖ + 2β

Kβ

] 1
q

H(S 1, S 2)
1
q ,

where β := max{‖πS 1(x∗)‖, ‖πS 2(x∗)‖}.

Proof. Let x∗ be any point in X∗. Denote x̄1 := πS 1(x∗) and x̄2 := πS 2(x∗). Let x := J−1(x). Observe that

〈J(x) − J(x̄1); y − x̄1〉 ≤ 0, ∀y ∈ S 1

and
〈J(x) − J(x̄2); y − x̄2〉 ≤ 0, ∀y ∈ S 2.

Using Part (1) in Proposition 3.2, we have for β = max{‖πS 1(x∗)‖, ‖πS 2(x∗)‖} > 0

〈J(x̄2) − J(x̄1); x̄2 − x̄1〉 ≥ Kβ‖x̄2 − x̄1‖
q. (3.2)
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IfH(S 1, S 2) = ∞, then we are done. Assume thatH(S 1, S 2) < ∞. Then there exists ξ1 ∈ S 1 such that

‖x̄2 − ξ1‖ ≤ H(S 1, S 2).

So

〈J(x) − J(x̄1); x̄2 − x̄1〉 = 〈J(x) − J(x̄1); x̄2 − ξ1〉 + 〈J(x) − J(x̄1); ξ1 − x̄1〉

≤ ‖J(x) − J(x̄1)‖‖x̄2 − ξ1‖ ≤ ‖J(x) − J(x̄1)‖H(S 1, S 2).

Similarly, we have

〈J(x) − J(x̄2); x̄1 − x̄2〉 ≤ ‖J(x) − J(x̄2)‖H(S 1, S 2).

Therefore, by adding the two above inequalities:

〈J(x̄2) − J(x̄1); x̄2 − x̄1〉 ≤ [‖J(x) − J(x̄1)‖ + ‖J(x) − J(x̄2)‖]H(S 1, S 2).

Hence, by (3.2) we obtain

Kβ‖x̄2 − x̄1‖
q ≤ [‖J(x) − J(x̄1)‖ + ‖J(x) − J(x̄2)‖]H(S 1, S 2)
≤ [2‖x∗‖ + ‖x̄1‖ + ‖x̄2‖]H(S 1, S 2),

and so

‖πS 1(x∗) − πS 2(x∗)‖ = ‖x̄1 − x̄2‖ ≤

[
2‖x∗‖ + 2β

Kβ

] 1
q

H(S 1, S 2)
1
q .

Thus, completing the proof of Proposition 3.3. �

We start by proving that the Eq (3.1) is equivalent to the proposed variant of implicit sweeping
process (1.1).

Proposition 3.4. Under the assumptions (A1)–(A3), we have x is a solution of (1.1) if and only if x is
a solution of (3.1).

Proof. Let x be a solution of (1.1). Then for a.e. t ∈ I and for any y ∈ C(t, x(t)) we have by definition
of the normal cone of closed convex sets

〈g(t, x(t)) − J(ẋ(t)); y − BJ[B∗J(ẋ(t)) + h(t, x(t))]〉 ≤ 0.

Hence

〈g(t, x(t)) − J(ẋ(t)); B[B−1y − J(B∗J(ẋ(t)) + h(t, x(t)))]〉
= 〈B∗g(t, x(t)) − B∗J(ẋ(t)); B−1y − J(B∗J(ẋ(t)) + h(t, x(t)))〉
≤ 0.

This ensures by definition of convex normal cones that

B∗g(t, x(t)) − B∗J(ẋ(t)) ∈ NB−1C(t,x(t))(J[B∗J(ẋ(t)) + h(t, x(t))]).
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Using the characterization of the normal cone of closed convex sets in terms of generalised projection
stated in Part (3) in Proposition 3.2, we can write

J[B∗J(ẋ(t)) + h(t, x(t))] = πB−1C(t,x(t))

[
B∗g(t, x(t)) − B∗J(ẋ(t))

+ J−1J[B∗J(ẋ(t)) + h(t, x(t))
]

= πB−1C(t,x(t))

[
B∗g(t, x(t)) + h(t, x(t))

]
.

This ensures that

J(ẋ(t)) = (B∗)−1
[
J−1πB−1C(t,x(t))

(
B∗g(t, x(t)) + h(t, x(t))

)
− h(t, x)

]
,

that is, x is a solution of (3.1). Reciprocally, let x be a solution of (3.1). Then following the same
reasoning as above in the opposite direction, we conclude that x is a solution of (1.1) and so the proof
of Proposition 3.4 is complete. �

In order to prove the existence of solution for our main problem (1.1) using the above proposition,
we need to prove the existence of solutions for differential equations in Banach spaces.

Theorem 3.5. Let f : I × X → X be a mapping satisfying:

(H1) ‖ f (t, x)‖ ≤ L1,∀(t, x) ∈ I × (x0 + rB) for some r ≥ L1T.
(H2) f is uniformly continuous on I × (x0 + rB).
(H3) For a.e. t ∈ I, ∀A ⊂ x0 + rB with γ(A) > 0, we have for some L2 > 0

γ( f (t, A)) ≤ L2γ(A).

Then the differential equation {
ẋ(t) = f (t, x(t)) a.e. on I,
x(0) = x0 ∈ X,

has at least one Lipschitz solution.

Proof. Let N ≥ 1 and PN = {t0, t1, ....., tN} be a partition of I with t0 = 0 and tN = T . We prove by
considering on [t0, t1] the differential equation with constant right hand side

ẋ(t) = f (t0, x0), with x(0) = x0.

This equation has a unique solution xN(t) on [t0, t1] given by

xN(t) = x0 + f (t0, x0)(t − t0), ∀t ∈ [t0, t1].

Set x1 := xN(t1), we iterate by considering on [t1, t2] the initial value problem

ẋ(t) = f (t1, x1), with x(t1) = x1.

Similarly, we define x2 := xN(t2), we proceed in this way until a piecewise of mapping xN has been
defined on all the interval I. On the interval (ti, ti+1) we have

‖ẋN(t)‖ = ‖ f (ti, xi)‖ ≤ L1.
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Set xN
i := xN(ti), for all i = 0, · · · ,N. So,

‖xN
i+1 − xN

0 ‖ ≤ ‖xN
i+1 − xN

i ‖ + ‖xN
i − xN

0 ‖

≤ ‖ f (ti, xN
i )(ti+1 − ti)‖ + ‖xN

i − xN
0 ‖

≤ L1|ti+1 − ti| + ‖xN
i − xN

0 ‖.

Hence, by induction we get

‖xN
i+1 − xN

0 ‖ ≤ L1|ti+1 − ti| +
[
L1|ti − ti−1| + ‖xN

i−1 − xN
0 ‖

]
≤ L1

[
|ti+1 − ti| + |ti − ti−1|

]
+ ‖xN

i−1 − xN
0 ‖

≤ L1

[
|ti+1 − ti| + |ti − ti−1|

]
+

[
L1|ti−1 − ti−2| + ‖xN

i−2 − xN
0 ‖

]
...

≤ L1

[
|ti+1 − ti| + |ti − ti−1| + ... + |t2 − t1|

]
+ ‖xN

1 − xN
0 ‖

≤ L1|ti+1 − t0| ≤ L1T.

Thus,
‖xN

i − xN
0 ‖ ≤ L1T ≤ r, for all i = 1, 2, ...,N.

This ensures thet xN
i ∈ x0 +L1TB, ∀ i ∈ {1, 2, ...,N} and hence by convexity of the ball and by definition

of xN on [0,T ], we get all the values of xN are in x0 + rB. We also have ‖ẋN(t)‖ ≤ L1 for almost all t ∈ I
and so the sequence of mappings (xN)N is equilipschitz with ratio L1 on I. Set B(t) = {xN(t) : N ≥ 1}.
We wish to prove that B(t) is relatively compact in X, for any t ∈ I. By construction we have

xN(t) = xN(0) +

∫ t

0
f (s, xN(s))ds

= x0 +

∫ t

0
f (s, xN(s))ds

∈ x0 +

∫ t

0
f (s, B(s))ds, ∀t ∈ I, ∀N ≥ 1.

Hence,

B(t) ⊂ x0 +

∫ t

0
f (s, B(s))ds.

Using the assumption (H3) and the properties of the measure of non compactness γ we obtain

γ(B(t)) ≤ γ({x0}) + γ(
∫ t

0
f (s, B(s))ds)

≤

∫ t

0
γ( f (s, B(s)))ds ≤ L2

∫ t

0
γ(B(s))ds.

Thus

γ(B(t)) ≤ L2

∫ t

0
γ(B(s))ds, ∀t ∈ I.

Let y(t) :=
∫ t

0
γ(B(s))ds,∀t ∈ I. Then y′(t) = γ(B(t)) and

y′(t) ≤ L2y(t),∀t ∈ I.
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Multiplying both sides by e−L2t gives

y′(t)e−L2t ≤ L2y(t)e−L2t

and so
d
dt

(y(t)e−L2t) = y′(t)e−L2t − L2y(t)e−L2t ≤ 0.

Therefore,
y(t)e−L2t − y(0)e0 ≤ 0

and hence
y(t) ≤ y(0)eL2t = 0.

Thus,
γ(B(t)) ≤ L2y(t) ≤ 0.

This ensures that γ(B(t)) = 0, for all t ∈ I, that is, B(t) is relatively compact in X fo all t ∈ I.
Consequently, by Arzela-Ascoli theorem we conclude that (xN) has a subsequence coverging uniformly
to some x and (ẋN) converges weakly in L1(I, X) to ẋ. Now, by uniform continuity of f and the uniform
convergence of xN to x on I as N → ∞, it follows that f (t, xN(t))→ f (t, x(t)) uniformly on I, and so∫ t

0
f (s, xN(s))→

∫ t

0
f (s, x(s))ds.

On the other hand we have,

xN(t) = x0 +

∫ t

0
f (s, xN(s))ds

for all t ∈ I. Taking N → ∞ gives

x(t) = x0 +

∫ t

0
f (s, x(s))ds ∀t ∈ I.

This ensures that ẋ(t) = f (t, x(t)) a.e. on I, which completes the proof. �
We need to prove the following technical lemma.

Lemma 3.6. Assume that (A6) is satisfied. Then we have for any z ∈ X

‖πB−1C(t,x)(z)‖ ≤ ‖B−1‖µ(t)(‖x‖ + 1) + 2‖z‖, ∀x ∈ X and ∀t ∈ I. (3.3)

Proof. By assumption (A6) there exists some element s0 ∈ C(t, x) with ‖s0‖ ≤ µ(t)(‖x‖ + 1). Let
s∗0 := B−1s0 ∈ B−1C(t, x). Then, by definition of the generalised projection πB−1C(t,x) we have

V(z; πB−1C(t,x)(z)) ≤ V(z; s∗0) ≤ (‖z‖ + ‖s∗0‖)
2.

Thus, (
‖πB−1C(t,x)(z)‖ − ‖z‖

)2
≤ V(z; πB−1C(t,x)(z)) ≤ (‖z‖ + ‖s∗0‖)

2

and so ∣∣∣∣‖πB−1C(t,x)(z)‖ − ‖z‖
∣∣∣∣ ≤ ‖z‖ + ‖B−1‖µ(t)(‖x‖ + 1).
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Therefore,

‖πB−1C(t,x)(z)‖ = ‖πB−1C(t,x)(z)‖ − ‖z‖ + ‖z‖

≤

∣∣∣∣‖πB−1C(t,x)(z)‖ − ‖z‖
∣∣∣∣ + ‖z‖

≤ 2‖z‖ + ‖B−1‖µ(t)(‖x‖ + 1).

This completes the proof. �
In the proof of our next theorem, we need an additional assumption on the dual space X∗ in terms

of the measure of noncompactness of its normalized duality mapping J∗ = J−1. We say that X satisfies
the assumption (A) provided that for any l > 0 there exists some kl > 0 such that for any set A ⊂ lB∗
in X∗ we have

γ(J−1(A)) ≤ klγ(A). (3.4)

Obviously this assumption is satisfied for any Hilbert space with kl = 1 for any l > 0. Also, it is
satisfied for any 2-uniformly convex spaces (for example Lp spaces with p ∈ (1, 2]). Indeed, if X is 2-
uniformly convex spaces, the dual space X∗ is 2-uniformly smooth and so by Part (2) in Proposition 3.2,
the duality mapping J−1 is Lipschitz on bounded sets and so for any l > 0 there exists some Kl > 0
such that

‖J−1(x∗) − J−1(y∗)‖ ≤ Kl‖x∗ − y∗‖, ∀x∗, y∗ ∈ lB∗.

Fix any ε > 0. By definition of the measure of non compactness γ there exists a finite covering {Ai}
m
i=1

of A in X∗ such that
γ(A) + ε > diam(Ai),∀i = 1, · · · ,m.

Define Bi := J−1(Ai), ∀i = 1, · · · ,m. Obviously {Bi}
m
i=1 is a finite covering of J−1(Ai) in X. Fix now any

two points x, y in Bi we have x∗ := J(x), y∗ := J(y) ∈ Ai and so

Kldiam(Ai) ≥ Kl‖x∗ − y∗‖ ≥ ‖J−1(x∗) − J−1(y∗)‖ = ‖x − y‖.

Therefore, for any x, y in Bi we have

Kl(γ(A) + ε) > Kl‖x∗ − y∗‖ ≥ ‖x − y‖,

which ensures
Kl(γ(A) + ε) ≥ diam(Bi) > γ(J−1(A)).

Taking ε → 0 gives the desired inequality:

Klγ(A) ≥ γ(J−1(A)).

We may pose the following natural questions: Can we characterize the class of Banach spaces that
satisfy assumption (A)? Unfortunately, at present, there exists no answer or literature addressing this
inquiry. Nonetheless, it is worth mentioning that [13,14] delved into a distinct approach to analyze the
measure of noncompactness for duality mappings, and their concepts and methodologies may serve as
a basis for tackling the aforementioned question. Based on the aforesaid reasoning, we can deduce that
all Lp spaces with p ∈ (1, 2] satisfy assumption (A). However, the case of p > 2 remains unresolved,
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though we put forth the conjecture that (A) still holds. It is noteworthy that the examination of the
same inequality for operators other than the duality mapping has been studied in the reference [15,16].

Now, we use our previous results in Theorem 3.5 and Lemma 3.6, to state and prove the main
result of this paper, that is, the existence of solutions for the proposed implicit convex sweeping
processes (1.1).

Theorem 3.7. Let X be a 2-uniformly convex Banach space, x0 ∈ X, r > 0, C : I × X → X be a
set-valued mapping with nonempty, closed, and convex values, and let B : X∗ → X be a bounded
linear operator, and let g : I × X → X∗, and h : I × X → X be two given mappings. Assume that
X satisfies (A) and that (A1) − (A6) are also satisfied. Suppose that the following inequalities hold:
T µ̄‖B−1‖2 < 1 and 3M1‖B−1‖+2M1‖B‖‖B−1‖+‖B−1‖2µ̄(1+‖x0‖)

T−1−µ̄‖B−1‖2
< r, with µ̄ := max

t∈I
µ(t). Then there exists a mapping

x : I → X satisfying (1.1).

Proof. Let us consider the mapping

f (t, x) := J−1
[
(B∗)−1J−1πB−1C(t,x)

(
B∗g(t, x) + h(t, x)

)
− (B∗)−1h(t, x)

]
. (3.5)

We are going to show that all hypothesis (H1)–(H3) are satisfied for the mapping f defined in (3.5).
Let t ∈ I and let x ∈ x0 + rB. Then x ∈ MB with M := ‖x0‖ + r. Set

z := B∗g(t, x) + h(t, x)

and
y∗ := (B∗)−1J−1πB−1C(t,x)(z) − (B∗)−1h(t, x).

Under our assumptions (A1)–(A6) we have

‖z‖ ≤ ‖B∗‖‖g(t, x)‖ + ‖h(t, x)‖ ≤ M1(‖B‖ + 1) =: M3

and

‖y∗‖ ≤ ‖B−1‖‖πB−1C(t,x)(z)‖ + ‖B−1‖‖h(t, x)‖
≤ ‖B−1‖(M1 + ‖πB−1C(t,x)(z)‖).

On the other hand we have by Lemma 3.6

‖πB−1C(t,x)(z)‖ ≤ 2‖z‖ + ‖B−1‖µ(t)(‖x‖ + 1)
≤ 2M3 + ‖B−1‖µ̄(M + 1) =: R.

Therefore, we obtain

‖y∗‖ ≤ ‖B−1‖(M1 + R).

This ensures that (H1) is satisfied with L1 := ‖B−1‖(M1 + R). Also, we note that f is uniformly
continuous on I × (x0 + rB) because J−1 and πB−1C(t,x) are holder continuous from Propositions 3.2
and 3.3 and also by using (A4). On the other hand there exists some KL1 > 0 such that for a.e.
t ∈ [0,T ] and every A ⊂ x0 + rB,

γ( f (t, A)) ≤ ‖(B∗)−1‖(KL1‖B
−1‖µ̄ + M2)γ(A).
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Indeed, since the space X satisfies the assumption (A) we have for some KL1 > 0 such that

γ(J−1(D)) ≤ KL1γ(D), for any subset D in L1B∗.

Fix now any A ⊂ x0 + rB. Set

D := (B∗)−1J−1πB−1C(t,A)

[
B∗g(t, A) + h(t, A)

]
− (B∗)−1h(t, A).

Then, D is a subset of L1B∗ and so by the previous inequality we obtain

γ( f (t, A)) = γ
(
J−1

[
(B∗)−1J−1πB−1C(t,A)

[
B∗g(t, A) + h(t, A)

]
− (B∗)−1h(t, A)

])
≤ γ(J−1(D))
≤ KL1γ(D)
≤ KL1γ

(
(B∗)−1J−1πB−1C(t,A)

[
B∗g(t, A) + h(t, A)

]
− (B∗)−1h(t, A)

)
.

Thus, using the properties of γ and our assumptions we get

γ( f (t, A)) ≤ KL1‖B
−1‖

[
γ(J−1πB−1C(t,A)(B∗g(t, A) + h(t, A))) + γ(h(t, A))

]
≤ ‖B−1‖KL1

[
KL1γ(πB−1C(t,A)(B∗g(t, A) + h(t, A))) + γ(h(t, A))

]
≤ ‖B−1‖KL1

[
KL1γ

(
B−1C(t, A) ∩ RB

)
+ γ(h(t, A))

]
≤ ‖B−1‖KL1

[
KL1‖B

−1‖γ
(
C(t, A) ∩ R‖B‖B

)
+ 2M2γ(A))

]
≤ ‖B−1‖KL1

[
KL1‖B

−1‖k(t)γ(A) + 2M2γ(A))
]

≤ ‖B−1‖KL1

[
KL1‖B

−1‖max
t∈I

k(t) + 2M2

]
γ(A)

≤
[
‖B−1‖2K2

L1
k̄ + 2M2‖B−1‖KL1

]
γ(A), where k̄ := max

t∈I
k(t).

Thus, the assumption (H3) is satisfied with L2 := ‖B−1‖2K2
L1

k̄ + 2M2‖B−1‖KL1 . Now, all the
assumptions (H1)–(H3) of Theorem 3.5 are fulfilled but we need to verify the additional assumption
L1T < r. Indeed, using the inequalities

T µ̄‖B−1‖2 < 1,

3M1‖B−1‖ + 2M1‖B‖‖B−1‖ + ‖B−1‖2µ̄(1 + ‖x0‖)
T−1 − µ̄‖B−1‖2

< r,

we deduce that

3M1‖B−1‖ + 2M1‖B‖‖B−1‖ + ‖B−1‖2µ̄(1 + ‖x0‖) < rT−1 − rµ̄‖B−1‖2

and so
T L1 = T

[
3M1‖B−1‖ + 2M1‖B‖‖B−1‖ + ‖B−1‖2µ̄(1 + ‖x0‖) + rµ̄‖B−1‖2

]
< r.

Now, we can apply Theorem 3.5 to get a Lispchitz solution of the Eq (3.1) which is, in fact by using
Proposition 3.4, our desired solution of (1.1) and hence we achieve the poof of Theorem 3.7. �

Now, we present an illustrative example showing the applicability of our abstract results in Banach
spaces.
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Example 3.8 (Differential Variational Inequalities (DVI)). Let X := Lp(0,T ;R), with p ∈ (1, 2], W :
[0,T ] × X → S be a Lipschitz non increasing function w.r.t. the second variable with Lipschitz ratio
k > 0, S convex compact subset of Lp(0,T ;R) and we define the set-valued mapping C : [0,T ]× X⇒X
as follows: C(t, x) := S − W(t, x). Consider the following differential variational inequality: Find
x : [0,T ]→ X such that x(0) = x0 ∈ X and{

〈J(ẋ(t)) − g(t, x(t)), v − BJ[B∗J(ẋ(t)) + h(t, x(t))]〉 ≥ 0, (DVI)
for all v ∈ C(t, x), and for a.e. on [0,T ].

Here, h : I × X → X, g : I × X → X∗ are bounded Lipschitz functions and B : X∗ → X is a bounded
linear operator. Let us prove the existence of solutions for DVI by using our abstract results proved in
Theorem 3.7. First, we rewrite DVI in the form of (1.1). Clearly C has closed convex values and so
using the definition of normal cones for convex sets, DVI is equivalent to

J(ẋ(t)) − g(t, x(t)) ∈ −N(C(t, x); BJ[B∗J(ẋ(t)) + h(t, x(t))])

and hence DVI is equivalent to

J(ẋ(t)) ∈ −N(C(t, x); BJ[B∗J(ẋ(t)) + h(t, x(t))]) + g(t, x(t)).

Clearly (A1) and (A2) are satisfied. Also, we observe that for any x, y ∈ X and for any z ∈ C(t, y)

dC(t,x)(z) = inf
u∈C(t,x)

‖u − z‖ = inf
s∈S
‖s −W(t, x) − z‖ = dS (z + W(t, x))

= dS (sz −W(t, y) + W(t, x)),

where sz ∈ S with z = sz −W(t, y). Thus, we obtain

dC(t,x)(z) ≤ ‖W(t, x) −W(t, y)‖ ≤ k‖x − y‖, ∀z ∈ C(t, y).

Similarly, we have

dC(t,y)(u) ≤ ‖W(t, y) −W(t, x)‖ ≤ k‖x − y‖, ∀u ∈ C(t, x).

Therefore,
H(C(t, x),C(t, y)) = max{ sup

u∈C(t,x)
dC(t,y)(u), sup

z∈C(t,y)
dC(t,x)(z)} ≤ k‖x − y‖.

This ensures that (A4) is satisfied. On the other hand, since S is compact, we have γ(C(t, A)∩ rB) = 0,
and (A5) is obviously satisfied. Also, since by definition we have W(t, x) ∈ S , ∀(t, x) ∈ I × X, we
get 0 ∈ S − W(t, x) = C(t, x) for every t ∈ I and x ∈ X, and hence the assumption (A6) is satisfied.
Therefore, by Theorem 3.7 there exists a solution for DVI.

4. Conclusions

In summary, our study delves into the realm of 2-uniformly convex Banach spaces, successfully
establishing the existence of solutions for a specific adaptation of implicit state-dependent convex
sweeping processes. The core of our methodology revolves around a meticulously crafted differential
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equation strongly linked to the generalized projection operator. Through the meticulous examination in
this study, we significantly contribute to enhancing our comprehension of convex sweeping processes
in Banach spaces. Our subsequent objective is not only to deepen our understanding of these processes
but also to pave the way for extending these pivotal existence results into the realm of nonconvex
settings. Additionally, we present an illustrative example showing the applicability of our abstract
results in Banach spaces.
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