Research article Special Issues

A Quantum-Inspired Sperm Motility Algorithm

  • Received: 18 October 2021 Revised: 15 February 2022 Accepted: 24 February 2022 Published: 08 March 2022
  • MSC : 68T20, 90C26

  • Sperm Motility Algorithm (SMA), inspired by the human fertilization process, was proposed by Abdul-Raof and Hezam [1] to solve global optimization problems. Sperm flow obeys the Stokes equation or the Schrۤinger equation as its derived equivalent. This paper combines a classical SMA with quantum computation features to propose two novel Quantum-Inspired Evolutionary Algorithms: The first is called the Quantum Sperm Motility Algorithm (QSMA), and the second is called the Improved Quantum Sperm Motility Algorithm (IQSMA). The IQSMA is based on the characteristics of QSMA and uses an interpolation operator to generate a new solution vector in the search space. The two proposed algorithms are global convergence guaranteed population-based optimization algorithms, which outperform the original SMA in terms of their search-ability and have fewer parameters to control. The two proposed algorithms are tested using thirty-three standard dissimilarities benchmark functions. Performance and optimization results of the QSMA and IQSMA are compared with corresponding results obtained using the original SMA and those obtained from three state-of-the-art metaheuristics algorithms. The algorithms were tested on a series of numerical optimization problems. The results indicate that the two proposed algorithms significantly outperform the other presented algorithms.

    Citation: Ibrahim M. Hezam, Osama Abdul-Raof, Abdelaziz Foul, Faisal Aqlan. A Quantum-Inspired Sperm Motility Algorithm[J]. AIMS Mathematics, 2022, 7(5): 9057-9088. doi: 10.3934/math.2022504

    Related Papers:

  • Sperm Motility Algorithm (SMA), inspired by the human fertilization process, was proposed by Abdul-Raof and Hezam [1] to solve global optimization problems. Sperm flow obeys the Stokes equation or the Schrۤinger equation as its derived equivalent. This paper combines a classical SMA with quantum computation features to propose two novel Quantum-Inspired Evolutionary Algorithms: The first is called the Quantum Sperm Motility Algorithm (QSMA), and the second is called the Improved Quantum Sperm Motility Algorithm (IQSMA). The IQSMA is based on the characteristics of QSMA and uses an interpolation operator to generate a new solution vector in the search space. The two proposed algorithms are global convergence guaranteed population-based optimization algorithms, which outperform the original SMA in terms of their search-ability and have fewer parameters to control. The two proposed algorithms are tested using thirty-three standard dissimilarities benchmark functions. Performance and optimization results of the QSMA and IQSMA are compared with corresponding results obtained using the original SMA and those obtained from three state-of-the-art metaheuristics algorithms. The algorithms were tested on a series of numerical optimization problems. The results indicate that the two proposed algorithms significantly outperform the other presented algorithms.



    加载中


    [1] O. A. Raouf, I. M. Hezam, Sperm Motility Algorithm: A novel metaheuristic approach for global optimisation, Int. J. Oper. Res., 28 (2017), 143. https://doi.org/10.1504/IJOR.2017.081473 doi: 10.1504/IJOR.2017.081473
    [2] A. K. Mandal, R. Sen, S. Goswami, A. Chakrabarti, B. Chakraborty, A new approach for feature subset selection using quantum inspired owl search algorithm, In: 2020 10th International Conference on Information Science and Technology (ICIST), 2020,266-273. https://doi.org/10.1109/ICIST49303.2020.9202140
    [3] M. Mirhosseini, M. Fazlali, H. T. Malazi, S. K. Izadi, H. Nezamabadi-pour, Parallel Quadri-valent Quantum-Inspired Gravitational Search Algorithm on a heterogeneous platform for wireless sensor networks, Comput. Electr. Eng., 92 (2021), 107085. https://doi.org/10.1016/j.compeleceng.2021.107085 doi: 10.1016/j.compeleceng.2021.107085
    [4] L. Gyongyosi, S. Imre, A survey on quantum computing technology, Comput. Sci. Rev., 31 (2019), 51-71. https://doi.org/10.1016/j.cosrev.2018.11.002 doi: 10.1016/j.cosrev.2018.11.002
    [5] A. W. Harrow, A. Montanaro, Quantum computational supremacy, Nature, 549 (2017), 203-209. https://doi.org/10.1038/nature23458 doi: 10.1038/nature23458
    [6] L. Gyongyosi, S. Imre, Scalable distributed gate-model quantum computers, Sci. Rep., 11 (2021), 5172. https://doi.org/10.1038/s41598-020-76728-5 doi: 10.1038/s41598-020-76728-5
    [7] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, et al., Quantum supremacy using a programmable superconducting processor, Nature, 574 (2019), 505-510. https://doi.org/10.1038/s41586-019-1666-5 doi: 10.1038/s41586-019-1666-5
    [8] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum, 2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79 doi: 10.22331/q-2018-08-06-79
    [9] S. Aaronson, L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, In: 32nd Computational Complexity Conference (CCC 2017), 2017. https://doi.org/10.4230/LIPIcs.CCC.2017.22
    [10] Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T. Chong, et al., Quantum computer systems for scientific discovery, PRX Quantum, 2 (2021), 017001. https://doi.org/10.1103/PRXQuantum.2.017001 doi: 10.1103/PRXQuantum.2.017001
    [11] D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, et al., Development of quantum interconnects (QuICs) for next-generation information technologies, PRX Quantum, 2 (2021), 017002. https://doi.org/10.1103/PRXQuantum.2.017002 doi: 10.1103/PRXQuantum.2.017002
    [12] E. Farhi, H. Neven, Classification with quantum neural networks on near termprocessors, arXiv, 2018. Available from: http://arXiv.org/abs/1802.06002.
    [13] S. Lloyd, Quantum approximate optimization is computationally universal, 2018. Available from: http://arXiv.org/abs/1812.11075.
    [14] A. Manju, M. J. Nigam, Applications of quantum inspired computational intelligence: A survey, Artif. Intell. Rev., 42 (2014), 79-156. https://doi.org/10.1007/s10462-012-9330-6 doi: 10.1007/s10462-012-9330-6
    [15] G. Zhang, Quantum-Inspired Evolutionary Algorithms: A survey and empirical study, J. Heuristics, 17 (2011), 303-351. https://doi.org/10.1007/s10732-010-9136-0 doi: 10.1007/s10732-010-9136-0
    [16] D. Johannsen, P. P. Kurur, J. Lengler, Evolutionary algorithms for quantum computers, 68 (2014), 152-189. https://doi.org/10.1007/s00453-013-9784-1
    [17] E. R. Johnston, Programming quantum computers: Essential algorithms and code samples, O'Reilly Media, 2019.
    [18] D. Goswami, Quantum distributed computing applied to Grover'search algorithm, In: Computing with new resources, Lecture Notes in Computer Science, Springer, 2014. https://doi.org/10.1007/978-3-319-13350-8_14
    [19] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, J. D. Doll, Quantum annealing: A new method for minimizing multidimensional functions, Chem. Phys. Lett., 219 (1994), 343-348. https://doi.org/10.1016/0009-2614(94)00117-0 doi: 10.1016/0009-2614(94)00117-0
    [20] M. Steffen, W. van Dam, T. Hogg, G. Breyta, I. Chuang, Experimental implementation of an adiabatic quantum optimization algorithm, Phys. Rev. Lett., 90 (2003), 067903. https://doi.org/10.1103/PhysRevLett.90.067903 doi: 10.1103/PhysRevLett.90.067903
    [21] A. Narayanan, M. Moore, Quantum-Inspired Genetic Algorithms, In: Proceedings of the IEEE Conference on Evolutionary Computation, 1996, 61-66. https://doi.org/10.1109/icec.1996.542334
    [22] H. Kundra, W. Khan, M. Malik, K. P. Rane, R. Neware, V. Jain, Quantum-Inspired Firefly Algorithm integrated with cuckoo search for optimal path planning, Int. J. Mod. Phys. C, 33 (2021), 2250018. https://doi.org/10.1142/S0129183122500188 doi: 10.1142/S0129183122500188
    [23] N. R. Eluri, G. R. Kancharla, S. Dara, V. Dondeti, Cancer data classification by quantum-inspired immune clone optimization-based optimal feature selection using gene expression data: Deep learning approach, Date Technol. Appl., 2021. https://doi.org/10.1108/DTA-05-2020-0109 doi: 10.1108/DTA-05-2020-0109
    [24] B. Arun, Quality materialised view selection using quantum inspired artificial bee colony optimisation, Int. J. Intell. Inf. Database Syst., 13 (2020), 33-60. https://doi.org/10.1504/IJIIDS.2020.108215 doi: 10.1504/IJIIDS.2020.108215
    [25] Z. Gao, Y. Zhang, S. Zhou, W. Lyu, An enhanced Quantum-Inspired Gravitational Search Algorithm for color prediction based on the absorption spectrum, Text. Res. J., 91 (2021), 1211-1226. https://doi.org/10.1177/0040517520977007 doi: 10.1177/0040517520977007
    [26] Y. Meraihi, D. Acheli, A. R. Cherif, M. Mahseur, A Quantum-Inspired Binary Firefly Algorithm for QoS multicast routing, Int. J. Metaheuristics, 6 (2017), 309-333. https://doi.org/10.1504/IJMHEUR.2017.086980 doi: 10.1504/IJMHEUR.2017.086980
    [27] T. C. Lu, J. C. Juang, Quantum-Inspired Space Search Algorithm (QSSA) for global numerical optimization, Appl. Math. Comput., 218 (2011), 2516-2532. https://doi.org/10.1016/j.amc.2011.07.067 doi: 10.1016/j.amc.2011.07.067
    [28] A. Layeb, A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems, J. Comput. Appl. Math., 253 (2013), 14-25. https://doi.org/10.1016/j.cam.2013.04.004 doi: 10.1016/j.cam.2013.04.004
    [29] R. K. Agrawal, B. Kaur, P. Agarwal, Quantum Inspired Particle Swarm Optimization with guided exploration for function optimization, Appl. Soft Comput., 102 (2021), 107122. https://doi.org/10.1016/j.asoc.2021.107122 doi: 10.1016/j.asoc.2021.107122
    [30] A. S. Thakur, T. Biswas, P. Kuila, Binary quantum-inspired gravitational search algorithm-based multi-criteria scheduling for multi-processor computing systems, J. Supercomput., 77 (2021), 796-817. https://doi.org/10.1007/s11227-020-03292-0 doi: 10.1007/s11227-020-03292-0
    [31] K. Mishra, R. Pradhan, S. K. Majhi, Quantum-Inspired Binary Chaotic Salp Swarm Algorithm (QBCSSA)-based dynamic task scheduling for multiprocessor cloud computing systems, J. Supercomput., 77 (2021), 10377-10423. https://doi.org/10.1007/s11227-021-03695-7 doi: 10.1007/s11227-021-03695-7
    [32] R. Pradhan, M. R. Khan, P. K. Sethy, S. K. Majhi, QALO-MOR: Improved antlion optimizer based on quantum information theory for model order reduction, J. Intell. Fuzzy Syst., 41 (2021), 5747-5757. https://doi.org/10.3233/JIFS-189894 doi: 10.3233/JIFS-189894
    [33] S. A. Mohsin, A. Younes, S. M. Darwish, Dynamic cost ant colony algorithm to optimize query for distributed database based on quantum-inspired approach, Symmetry, 13 (2021), 1-20. https://doi.org/10.3390/sym13010070 doi: 10.3390/sym13010070
    [34] V. P. Soloviev, C. Bielza, P. Larranaga, Quantum-Inspired Estimation of Distribution Algorithm to solve the travelling salesman problem, In: 2021 IEEE Congress on Evolutionary Computation (CEC), 2021,416-425. https://doi.org/10.1109/CEC45853.2021.9504821
    [35] M. Soleimanpour-Moghadam, H. Nezamabadi-Pour, An improved quantum behaved gravitational search algorithm, In: ICEE 2012-20th Iranian Conference on Electrical Engineering, (2012), 711-715. https://doi.org/10.1109/IranianCEE.2012.6292446
    [36] A. S. Hesar, S. R. Kamel, M. Houshmand, A quantum multi-objective optimization algorithm based on harmony search method, Soft. Comput., 25 (2021), 9427-9439. https://doi.org/10.1007/s00500-021-05799-x doi: 10.1007/s00500-021-05799-x
    [37] X. Liu, G. G. Wang, L. Wang, LSFQPSO: Quantum particle swarm optimization with optimal guided Léyy flight and straight flight for solving optimization problems, Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01497-2 doi: 10.1007/s00366-021-01497-2
    [38] X. Zhang, S. Xia, X. Li, Quantum behavior-based enhanced fruit fly optimization algorithm with application to UAV path planning, Int. J. Comput. Intell. Syst., 13 (2020), 1315. https://doi.org/10.2991/ijcis.d.200825.001 doi: 10.2991/ijcis.d.200825.001
    [39] X. Zhang, S. Xia, Quantum behaved fruit fly optimization algorithm for continuous function optimization problems, In: Advances in swarm intelligence, Lecture Notes in Computer Science, Springer, 2019,331-340. https://doi.org/10.1007/978-3-030-26369-0_31
    [40] A. Kaveh, M. Kamalinejad, H. Arzani, Quantum evolutionary algorithm hybridized with Enhanced colliding bodies for optimization, Structures, 28 (2020), 1479-1501. https://doi.org/10.1016/j.istruc.2020.09.079 doi: 10.1016/j.istruc.2020.09.079
    [41] N. R. Zhou, S. H. Xia, Y. Ma, Y. Zhang, Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy, Quantum Inf. Process., 21 (2022), 42. https://doi.org/10.1007/s11128-021-03380-x doi: 10.1007/s11128-021-03380-x
    [42] M. S. Alvarez-Alvarado, F. E. Alban-Chacón, E. A. Lamilla-Rubio, C. D. Rodríguez-Gallegos, W. Velásquez, Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields, Sci. Rep., 11 (2021), 11655. https://doi.org/10.1038/s41598-021-90847-7 doi: 10.1038/s41598-021-90847-7
    [43] A. T. Khan, X. Cao, S. Li, B. Hu, V. N. Katsikis, Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem, Sci. China Inf. Sci., 64 (2021), 152204. https://doi.org/10.1007/s11432-020-2894-9 doi: 10.1007/s11432-020-2894-9
    [44] S. Palosaari, S. Parviainen, J. Hironen, J. Reunanen, P. Neittaanmaki, A random search algorithm for constrained global optimization, Acta Polytech. Scand.-Chem. Technol., 172 (1986), 2-45.
    [45] N. Manzanares-Filho, R. B. F. Albuquerque, B. S. Sousa, L. G. C. Santos, A comparative study of controlled random search algorithms with application to inverse aerofoil design, Eng. Optim., 50 (2018), 996-1015. https://doi.org/10.1080/0305215X.2017.1359584 doi: 10.1080/0305215X.2017.1359584
    [46] Y. Sun, T. Yang, Z. Liu, A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems, Appl. Soft Comput., 85 (2019), 105744. https://doi.org/10.1016/j.asoc.2019.105744 doi: 10.1016/j.asoc.2019.105744
    [47] D. Singh, S. Agrawal, Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems, Appl. Soft Comput., 38 (2016), 1040-1048. https://doi.org/10.1016/j.asoc.2015.09.033 doi: 10.1016/j.asoc.2015.09.033
    [48] A. Kaveh, M. I. Ghazaan, F. Saadatmand, Colliding bodies optimization with Morlet wavelet mutation and quadratic interpolation for global optimization problems, Eng. Optim., 2021. https://doi.org/10.1007/s00366-020-01236-z doi: 10.1007/s00366-020-01236-z
    [49] Y. Sun, Y. Chen, Multi-population improved whale optimization algorithm for high dimensional optimization, Appl. Soft Comput., 112 (2021), 107854. https://doi.org/10.1016/j.asoc.2021.107854 doi: 10.1016/j.asoc.2021.107854
    [50] H. Nezamabadi-pour, A Quantum-Inspired Gravitational Search Algorithm for binary encoded optimization problems, Eng. Appl. Artif. Intell., 40 (2015), 62-75. https://doi.org/10.1016/j.engappai.2015.01.002 doi: 10.1016/j.engappai.2015.01.002
    [51] D. J. Smith, E. A. Gaffney, J. R. Blake, J. C. Kirkman-Brown, Human sperm accumulation near surfaces: A simulation study, J. Fluid Mech., 621 (2009), 289-320. https://doi.org/10.1017/S0022112008004953 doi: 10.1017/S0022112008004953
    [52] D. J. Smith, A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow, Proc. R. Soc. A, Math. Phys. Eng. Sci., 465 (2009), 3605-3626. https://doi.org/10.1098/rspa.2009.0295 doi: 10.1098/rspa.2009.0295
    [53] V. Christianto, F. Smarandache, An exact mapping from Navier-Stokes equation to Schrödinger equation via Riccati equation, Prog. Phys., 1 (2007), 38-39.
    [54] K. Dietrich, D. Vautherin, Sur l'équivalence entre des types particuliers des équations de Navier-Stokes et de Schrödinger non linéaire, J. Phys., 46 (1985), 313-316. https://doi.org/10.1051/jphys:01985004603031300 doi: 10.1051/jphys:01985004603031300
    [55] V. V. Kulish, J. L. Lage, Exact solutions to the Navier-Stokes equation for an incompressible flow from the interpretation of the Schroedinger wave function, arXiv, 2013. Available from: https://arXiv.org/abs/1301.3586.
    [56] T. Schürmann, I. Hoffmann, A closer look at the uncertainty relation of position and momentum, Found. Phys., 39 (2009), 958-963. https://doi.org/10.1007/s10701-009-9310-0 doi: 10.1007/s10701-009-9310-0
    [57] N. Manzanares-Filho, C. A. A. Moino, A. B. Jorge, An Improved Controlled Random Search Algorithm for inverse airfoil cascade design, In: Proceedings of 6th World Congresses of Structural and Multidisciplinary Optimization, 2005.
    [58] M. Pant, R. Thangaraj, A. Abraham, A new quantum behaved particle swarm optimization, In: GECCO?8: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, 2008, 87-94. https://doi.org/10.1145/1389095.1389108
    [59] A. Manju, M. J. Nigam, An improved quantum inspired firefly algorithm with interpolation operator, In: Proceedings of the Third International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, Springer, 2014. https://doi.org/10.1007/978-81-322-1771-8_7
    [60] N. Manzanares-Filho, R. B. F. Albuquerque, Accelerating controlled random search algorithms using a distribution strategy, EngOpt 2008-Int. Conf. Eng. Optim., 2008.
    [61] B. S. De Sousa, N. Manzanares-Filho, A. B. Jorge, Multiobjective laminar-flow airfoil shape optimization using a controlled random search algorithm, EngOpt 2008-Int. Conf. Eng. Optim., 2008.
    [62] A. H. Gandomi, A. H. Alavi, Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010 doi: 10.1016/j.cnsns.2012.05.010
    [63] I. M. Hezam, O. A. Raouf, M. M. Hadhoud, A new compound swarm intelligence algorithms for solving global optimization problems, Int. J. Comput. Technol., 10 (2013), 2010-2020. https://doi.org/10.24297/ijct.v10i9.1389 doi: 10.24297/ijct.v10i9.1389
    [64] M. Jamil, X. S. Yang, A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Model. Numer. Optim., 4 (2013), 150-194. https://doi.org/10.1504/IJMMNO.2013.055204 doi: 10.1504/IJMMNO.2013.055204
    [65] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, Problem definitions and the 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization, Technical Report, Singapore: Nanyang Technological University, 2018.
    [66] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191 (2020), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190
    [67] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120-133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [68] S. Mirjalilia, A. H. Gandomibf, S. Z, Mirjalilic, S. Saremi, H. Farisd, S. M. Mirjalilie, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114 (2017), 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1973) PDF downloads(80) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog