Sperm Motility Algorithm (SMA), inspired by the human fertilization process, was proposed by Abdul-Raof and Hezam [
Citation: Ibrahim M. Hezam, Osama Abdul-Raof, Abdelaziz Foul, Faisal Aqlan. A Quantum-Inspired Sperm Motility Algorithm[J]. AIMS Mathematics, 2022, 7(5): 9057-9088. doi: 10.3934/math.2022504
Sperm Motility Algorithm (SMA), inspired by the human fertilization process, was proposed by Abdul-Raof and Hezam [
[1] | O. A. Raouf, I. M. Hezam, Sperm Motility Algorithm: A novel metaheuristic approach for global optimisation, Int. J. Oper. Res., 28 (2017), 143. https://doi.org/10.1504/IJOR.2017.081473 doi: 10.1504/IJOR.2017.081473 |
[2] | A. K. Mandal, R. Sen, S. Goswami, A. Chakrabarti, B. Chakraborty, A new approach for feature subset selection using quantum inspired owl search algorithm, In: 2020 10th International Conference on Information Science and Technology (ICIST), 2020,266-273. https://doi.org/10.1109/ICIST49303.2020.9202140 |
[3] | M. Mirhosseini, M. Fazlali, H. T. Malazi, S. K. Izadi, H. Nezamabadi-pour, Parallel Quadri-valent Quantum-Inspired Gravitational Search Algorithm on a heterogeneous platform for wireless sensor networks, Comput. Electr. Eng., 92 (2021), 107085. https://doi.org/10.1016/j.compeleceng.2021.107085 doi: 10.1016/j.compeleceng.2021.107085 |
[4] | L. Gyongyosi, S. Imre, A survey on quantum computing technology, Comput. Sci. Rev., 31 (2019), 51-71. https://doi.org/10.1016/j.cosrev.2018.11.002 doi: 10.1016/j.cosrev.2018.11.002 |
[5] | A. W. Harrow, A. Montanaro, Quantum computational supremacy, Nature, 549 (2017), 203-209. https://doi.org/10.1038/nature23458 doi: 10.1038/nature23458 |
[6] | L. Gyongyosi, S. Imre, Scalable distributed gate-model quantum computers, Sci. Rep., 11 (2021), 5172. https://doi.org/10.1038/s41598-020-76728-5 doi: 10.1038/s41598-020-76728-5 |
[7] | F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, et al., Quantum supremacy using a programmable superconducting processor, Nature, 574 (2019), 505-510. https://doi.org/10.1038/s41586-019-1666-5 doi: 10.1038/s41586-019-1666-5 |
[8] | J. Preskill, Quantum computing in the NISQ era and beyond, Quantum, 2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79 doi: 10.22331/q-2018-08-06-79 |
[9] | S. Aaronson, L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, In: 32nd Computational Complexity Conference (CCC 2017), 2017. https://doi.org/10.4230/LIPIcs.CCC.2017.22 |
[10] | Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T. Chong, et al., Quantum computer systems for scientific discovery, PRX Quantum, 2 (2021), 017001. https://doi.org/10.1103/PRXQuantum.2.017001 doi: 10.1103/PRXQuantum.2.017001 |
[11] | D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, et al., Development of quantum interconnects (QuICs) for next-generation information technologies, PRX Quantum, 2 (2021), 017002. https://doi.org/10.1103/PRXQuantum.2.017002 doi: 10.1103/PRXQuantum.2.017002 |
[12] | E. Farhi, H. Neven, Classification with quantum neural networks on near termprocessors, arXiv, 2018. Available from: http://arXiv.org/abs/1802.06002. |
[13] | S. Lloyd, Quantum approximate optimization is computationally universal, 2018. Available from: http://arXiv.org/abs/1812.11075. |
[14] | A. Manju, M. J. Nigam, Applications of quantum inspired computational intelligence: A survey, Artif. Intell. Rev., 42 (2014), 79-156. https://doi.org/10.1007/s10462-012-9330-6 doi: 10.1007/s10462-012-9330-6 |
[15] | G. Zhang, Quantum-Inspired Evolutionary Algorithms: A survey and empirical study, J. Heuristics, 17 (2011), 303-351. https://doi.org/10.1007/s10732-010-9136-0 doi: 10.1007/s10732-010-9136-0 |
[16] | D. Johannsen, P. P. Kurur, J. Lengler, Evolutionary algorithms for quantum computers, 68 (2014), 152-189. https://doi.org/10.1007/s00453-013-9784-1 |
[17] | E. R. Johnston, Programming quantum computers: Essential algorithms and code samples, O'Reilly Media, 2019. |
[18] | D. Goswami, Quantum distributed computing applied to Grover'search algorithm, In: Computing with new resources, Lecture Notes in Computer Science, Springer, 2014. https://doi.org/10.1007/978-3-319-13350-8_14 |
[19] | A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, J. D. Doll, Quantum annealing: A new method for minimizing multidimensional functions, Chem. Phys. Lett., 219 (1994), 343-348. https://doi.org/10.1016/0009-2614(94)00117-0 doi: 10.1016/0009-2614(94)00117-0 |
[20] | M. Steffen, W. van Dam, T. Hogg, G. Breyta, I. Chuang, Experimental implementation of an adiabatic quantum optimization algorithm, Phys. Rev. Lett., 90 (2003), 067903. https://doi.org/10.1103/PhysRevLett.90.067903 doi: 10.1103/PhysRevLett.90.067903 |
[21] | A. Narayanan, M. Moore, Quantum-Inspired Genetic Algorithms, In: Proceedings of the IEEE Conference on Evolutionary Computation, 1996, 61-66. https://doi.org/10.1109/icec.1996.542334 |
[22] | H. Kundra, W. Khan, M. Malik, K. P. Rane, R. Neware, V. Jain, Quantum-Inspired Firefly Algorithm integrated with cuckoo search for optimal path planning, Int. J. Mod. Phys. C, 33 (2021), 2250018. https://doi.org/10.1142/S0129183122500188 doi: 10.1142/S0129183122500188 |
[23] | N. R. Eluri, G. R. Kancharla, S. Dara, V. Dondeti, Cancer data classification by quantum-inspired immune clone optimization-based optimal feature selection using gene expression data: Deep learning approach, Date Technol. Appl., 2021. https://doi.org/10.1108/DTA-05-2020-0109 doi: 10.1108/DTA-05-2020-0109 |
[24] | B. Arun, Quality materialised view selection using quantum inspired artificial bee colony optimisation, Int. J. Intell. Inf. Database Syst., 13 (2020), 33-60. https://doi.org/10.1504/IJIIDS.2020.108215 doi: 10.1504/IJIIDS.2020.108215 |
[25] | Z. Gao, Y. Zhang, S. Zhou, W. Lyu, An enhanced Quantum-Inspired Gravitational Search Algorithm for color prediction based on the absorption spectrum, Text. Res. J., 91 (2021), 1211-1226. https://doi.org/10.1177/0040517520977007 doi: 10.1177/0040517520977007 |
[26] | Y. Meraihi, D. Acheli, A. R. Cherif, M. Mahseur, A Quantum-Inspired Binary Firefly Algorithm for QoS multicast routing, Int. J. Metaheuristics, 6 (2017), 309-333. https://doi.org/10.1504/IJMHEUR.2017.086980 doi: 10.1504/IJMHEUR.2017.086980 |
[27] | T. C. Lu, J. C. Juang, Quantum-Inspired Space Search Algorithm (QSSA) for global numerical optimization, Appl. Math. Comput., 218 (2011), 2516-2532. https://doi.org/10.1016/j.amc.2011.07.067 doi: 10.1016/j.amc.2011.07.067 |
[28] | A. Layeb, A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems, J. Comput. Appl. Math., 253 (2013), 14-25. https://doi.org/10.1016/j.cam.2013.04.004 doi: 10.1016/j.cam.2013.04.004 |
[29] | R. K. Agrawal, B. Kaur, P. Agarwal, Quantum Inspired Particle Swarm Optimization with guided exploration for function optimization, Appl. Soft Comput., 102 (2021), 107122. https://doi.org/10.1016/j.asoc.2021.107122 doi: 10.1016/j.asoc.2021.107122 |
[30] | A. S. Thakur, T. Biswas, P. Kuila, Binary quantum-inspired gravitational search algorithm-based multi-criteria scheduling for multi-processor computing systems, J. Supercomput., 77 (2021), 796-817. https://doi.org/10.1007/s11227-020-03292-0 doi: 10.1007/s11227-020-03292-0 |
[31] | K. Mishra, R. Pradhan, S. K. Majhi, Quantum-Inspired Binary Chaotic Salp Swarm Algorithm (QBCSSA)-based dynamic task scheduling for multiprocessor cloud computing systems, J. Supercomput., 77 (2021), 10377-10423. https://doi.org/10.1007/s11227-021-03695-7 doi: 10.1007/s11227-021-03695-7 |
[32] | R. Pradhan, M. R. Khan, P. K. Sethy, S. K. Majhi, QALO-MOR: Improved antlion optimizer based on quantum information theory for model order reduction, J. Intell. Fuzzy Syst., 41 (2021), 5747-5757. https://doi.org/10.3233/JIFS-189894 doi: 10.3233/JIFS-189894 |
[33] | S. A. Mohsin, A. Younes, S. M. Darwish, Dynamic cost ant colony algorithm to optimize query for distributed database based on quantum-inspired approach, Symmetry, 13 (2021), 1-20. https://doi.org/10.3390/sym13010070 doi: 10.3390/sym13010070 |
[34] | V. P. Soloviev, C. Bielza, P. Larranaga, Quantum-Inspired Estimation of Distribution Algorithm to solve the travelling salesman problem, In: 2021 IEEE Congress on Evolutionary Computation (CEC), 2021,416-425. https://doi.org/10.1109/CEC45853.2021.9504821 |
[35] | M. Soleimanpour-Moghadam, H. Nezamabadi-Pour, An improved quantum behaved gravitational search algorithm, In: ICEE 2012-20th Iranian Conference on Electrical Engineering, (2012), 711-715. https://doi.org/10.1109/IranianCEE.2012.6292446 |
[36] | A. S. Hesar, S. R. Kamel, M. Houshmand, A quantum multi-objective optimization algorithm based on harmony search method, Soft. Comput., 25 (2021), 9427-9439. https://doi.org/10.1007/s00500-021-05799-x doi: 10.1007/s00500-021-05799-x |
[37] | X. Liu, G. G. Wang, L. Wang, LSFQPSO: Quantum particle swarm optimization with optimal guided Léyy flight and straight flight for solving optimization problems, Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01497-2 doi: 10.1007/s00366-021-01497-2 |
[38] | X. Zhang, S. Xia, X. Li, Quantum behavior-based enhanced fruit fly optimization algorithm with application to UAV path planning, Int. J. Comput. Intell. Syst., 13 (2020), 1315. https://doi.org/10.2991/ijcis.d.200825.001 doi: 10.2991/ijcis.d.200825.001 |
[39] | X. Zhang, S. Xia, Quantum behaved fruit fly optimization algorithm for continuous function optimization problems, In: Advances in swarm intelligence, Lecture Notes in Computer Science, Springer, 2019,331-340. https://doi.org/10.1007/978-3-030-26369-0_31 |
[40] | A. Kaveh, M. Kamalinejad, H. Arzani, Quantum evolutionary algorithm hybridized with Enhanced colliding bodies for optimization, Structures, 28 (2020), 1479-1501. https://doi.org/10.1016/j.istruc.2020.09.079 doi: 10.1016/j.istruc.2020.09.079 |
[41] | N. R. Zhou, S. H. Xia, Y. Ma, Y. Zhang, Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy, Quantum Inf. Process., 21 (2022), 42. https://doi.org/10.1007/s11128-021-03380-x doi: 10.1007/s11128-021-03380-x |
[42] | M. S. Alvarez-Alvarado, F. E. Alban-Chacón, E. A. Lamilla-Rubio, C. D. Rodríguez-Gallegos, W. Velásquez, Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields, Sci. Rep., 11 (2021), 11655. https://doi.org/10.1038/s41598-021-90847-7 doi: 10.1038/s41598-021-90847-7 |
[43] | A. T. Khan, X. Cao, S. Li, B. Hu, V. N. Katsikis, Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem, Sci. China Inf. Sci., 64 (2021), 152204. https://doi.org/10.1007/s11432-020-2894-9 doi: 10.1007/s11432-020-2894-9 |
[44] | S. Palosaari, S. Parviainen, J. Hironen, J. Reunanen, P. Neittaanmaki, A random search algorithm for constrained global optimization, Acta Polytech. Scand.-Chem. Technol., 172 (1986), 2-45. |
[45] | N. Manzanares-Filho, R. B. F. Albuquerque, B. S. Sousa, L. G. C. Santos, A comparative study of controlled random search algorithms with application to inverse aerofoil design, Eng. Optim., 50 (2018), 996-1015. https://doi.org/10.1080/0305215X.2017.1359584 doi: 10.1080/0305215X.2017.1359584 |
[46] | Y. Sun, T. Yang, Z. Liu, A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems, Appl. Soft Comput., 85 (2019), 105744. https://doi.org/10.1016/j.asoc.2019.105744 doi: 10.1016/j.asoc.2019.105744 |
[47] | D. Singh, S. Agrawal, Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems, Appl. Soft Comput., 38 (2016), 1040-1048. https://doi.org/10.1016/j.asoc.2015.09.033 doi: 10.1016/j.asoc.2015.09.033 |
[48] | A. Kaveh, M. I. Ghazaan, F. Saadatmand, Colliding bodies optimization with Morlet wavelet mutation and quadratic interpolation for global optimization problems, Eng. Optim., 2021. https://doi.org/10.1007/s00366-020-01236-z doi: 10.1007/s00366-020-01236-z |
[49] | Y. Sun, Y. Chen, Multi-population improved whale optimization algorithm for high dimensional optimization, Appl. Soft Comput., 112 (2021), 107854. https://doi.org/10.1016/j.asoc.2021.107854 doi: 10.1016/j.asoc.2021.107854 |
[50] | H. Nezamabadi-pour, A Quantum-Inspired Gravitational Search Algorithm for binary encoded optimization problems, Eng. Appl. Artif. Intell., 40 (2015), 62-75. https://doi.org/10.1016/j.engappai.2015.01.002 doi: 10.1016/j.engappai.2015.01.002 |
[51] | D. J. Smith, E. A. Gaffney, J. R. Blake, J. C. Kirkman-Brown, Human sperm accumulation near surfaces: A simulation study, J. Fluid Mech., 621 (2009), 289-320. https://doi.org/10.1017/S0022112008004953 doi: 10.1017/S0022112008004953 |
[52] | D. J. Smith, A boundary element regularized Stokeslet method applied to cilia-and flagella-driven flow, Proc. R. Soc. A, Math. Phys. Eng. Sci., 465 (2009), 3605-3626. https://doi.org/10.1098/rspa.2009.0295 doi: 10.1098/rspa.2009.0295 |
[53] | V. Christianto, F. Smarandache, An exact mapping from Navier-Stokes equation to Schrödinger equation via Riccati equation, Prog. Phys., 1 (2007), 38-39. |
[54] | K. Dietrich, D. Vautherin, Sur l'équivalence entre des types particuliers des équations de Navier-Stokes et de Schrödinger non linéaire, J. Phys., 46 (1985), 313-316. https://doi.org/10.1051/jphys:01985004603031300 doi: 10.1051/jphys:01985004603031300 |
[55] | V. V. Kulish, J. L. Lage, Exact solutions to the Navier-Stokes equation for an incompressible flow from the interpretation of the Schroedinger wave function, arXiv, 2013. Available from: https://arXiv.org/abs/1301.3586. |
[56] | T. Schürmann, I. Hoffmann, A closer look at the uncertainty relation of position and momentum, Found. Phys., 39 (2009), 958-963. https://doi.org/10.1007/s10701-009-9310-0 doi: 10.1007/s10701-009-9310-0 |
[57] | N. Manzanares-Filho, C. A. A. Moino, A. B. Jorge, An Improved Controlled Random Search Algorithm for inverse airfoil cascade design, In: Proceedings of 6th World Congresses of Structural and Multidisciplinary Optimization, 2005. |
[58] | M. Pant, R. Thangaraj, A. Abraham, A new quantum behaved particle swarm optimization, In: GECCO?8: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, 2008, 87-94. https://doi.org/10.1145/1389095.1389108 |
[59] | A. Manju, M. J. Nigam, An improved quantum inspired firefly algorithm with interpolation operator, In: Proceedings of the Third International Conference on Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, Springer, 2014. https://doi.org/10.1007/978-81-322-1771-8_7 |
[60] | N. Manzanares-Filho, R. B. F. Albuquerque, Accelerating controlled random search algorithms using a distribution strategy, EngOpt 2008-Int. Conf. Eng. Optim., 2008. |
[61] | B. S. De Sousa, N. Manzanares-Filho, A. B. Jorge, Multiobjective laminar-flow airfoil shape optimization using a controlled random search algorithm, EngOpt 2008-Int. Conf. Eng. Optim., 2008. |
[62] | A. H. Gandomi, A. H. Alavi, Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010 doi: 10.1016/j.cnsns.2012.05.010 |
[63] | I. M. Hezam, O. A. Raouf, M. M. Hadhoud, A new compound swarm intelligence algorithms for solving global optimization problems, Int. J. Comput. Technol., 10 (2013), 2010-2020. https://doi.org/10.24297/ijct.v10i9.1389 doi: 10.24297/ijct.v10i9.1389 |
[64] | M. Jamil, X. S. Yang, A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Model. Numer. Optim., 4 (2013), 150-194. https://doi.org/10.1504/IJMMNO.2013.055204 doi: 10.1504/IJMMNO.2013.055204 |
[65] | K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, Problem definitions and the 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization, Technical Report, Singapore: Nanyang Technological University, 2018. |
[66] | A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191 (2020), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190 |
[67] | S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120-133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022 |
[68] | S. Mirjalilia, A. H. Gandomibf, S. Z, Mirjalilic, S. Saremi, H. Farisd, S. M. Mirjalilie, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114 (2017), 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002 |