This paper is concerned with an optimal control problem for general two-step descriptor systems. Based on the nonsmooth analysis and variational techniques, we establish the first-order necessary optimality conditions. Then, due to the expression of the general solution for linear descriptor systems, which is established by virtue of the Drazin inverse, we derived the generalized second-order necessary conditions for the first time. Also, for unfixed switching point case, we give some discussions.
Citation: Xin Wang, Yuxiang Liu, Lisha Wang. Necessary optimality conditions for two-step descriptor systems[J]. AIMS Mathematics, 2022, 7(5): 9039-9056. doi: 10.3934/math.2022503
This paper is concerned with an optimal control problem for general two-step descriptor systems. Based on the nonsmooth analysis and variational techniques, we establish the first-order necessary optimality conditions. Then, due to the expression of the general solution for linear descriptor systems, which is established by virtue of the Drazin inverse, we derived the generalized second-order necessary conditions for the first time. Also, for unfixed switching point case, we give some discussions.
[1] | S. L. Campbell, C. D. J. Meyer, Generalized inverses of linear transformations, London: Pitman Publishing Limited, 1979. http://dx.doi.org/10.1137/1.9780898719048 |
[2] | Z. Gao, D. Ho, Proportional multiple-integral observer design for descriptor systems with measurement output disturbances, IEE Proc. Contr. Theor. Appl., 151 (2004), 279–288. http://dx.doi.org/10.1049/ip-cta:20040437(410) doi: 10.1049/ip-cta:20040437(410) |
[3] | Z. Gao, S. X. Ding, Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems, Automatica, 43 (2007), 912–920. http://dx.doi.org/10.1016/j.automatica.2006.11.018 doi: 10.1016/j.automatica.2006.11.018 |
[4] | Z. Gao, X. Shi, Observer-based controller design for stochastic descriptor systems with Brownian motions, Automatica, 49 (2013), 2229–2235. http://dx.doi.org/10.1016/j.automatica.2013.04.001 doi: 10.1016/j.automatica.2013.04.001 |
[5] | R. R. Ismailov, K. B. Mansimov, Optimality conditions in a step control problem, Comput. Math. Math. Phys., 46 (2006), 1674–1686. http://dx.doi.org/10.1134/S0965542506100058 doi: 10.1134/S0965542506100058 |
[6] | R. R. Ismailov, K. B. Mansimov, Necessary optimality conditions for quasisingular controls in a step control problem, Cybern. Syst. Anal., 44 (2008), 1674–1686. http://dx.doi.org/10.1007/s10559-008-0007-8 doi: 10.1007/s10559-008-0007-8 |
[7] | J. Jaiswal, M. K. Gupta, N. K. Tomar, Necessary and sufficient conditions for ODE observer design of descriptor systems, Syst. Control Lett., 151 (2021), 104916. http://dx.doi.org/10.1016/j.sysconle.2021.104916 doi: 10.1016/j.sysconle.2021.104916 |
[8] | J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, New York: Academic Press, 1971. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 |
[9] | J. Y. Lin, Z. H. Yang, Optimal control problems for singular systems, Int. J. Control, 47 (1988), 1915–1924. http://dx.doi.org/10.1080/00207178808906146 doi: 10.1080/00207178808906146 |
[10] | S. F. Maharramov, Optimality conditions of a nonsmooth switching control systems, Autom. Control. Comput. Sci., 42 (2008), 94–101. http://dx.doi.org/10.3103/S0146411608020077 doi: 10.3103/S0146411608020077 |
[11] | K. B. Mansimov, Multipoint necessary optimality conditions of optimality of quasisingular controls, Automat. Rem. Contr., 43 (1982), 1271–1275. |
[12] | K. B. Mansimov, Singular controls in systems with delay, ELM, Baku, 1999. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 |
[13] | R. O. Mastaliyev, Necessary conditions of optimality of the first and second order in a stepwise optimal control problem with discrete-continuous systems, J. Automat. Inform. Sci., 47 (2015), 57–69. http://dx.doi.org/10.1615/JAutomatInfScien.v47.i6.50 doi: 10.1615/JAutomatInfScien.v47.i6.50 |
[14] | S. Meherrem, Some remarks for a decomposition of linear-quadratic optimal control problems for two-steps systems, J. Automat. Inform. Sci., 2015. Available from: http://www.optimization-online.org/DB_HTML/2013/08/4006.html. |
[15] | K. Mizukami, H. S. Wu, Optimal control problems for a class of nonlinear descriptor systems, Trans. IEE Japan, 110 (2008), 396–403. http://dx.doi.org/10.1541/ieejeiss1987.110.6-396 doi: 10.1541/ieejeiss1987.110.6-396 |
[16] | B. S. Mordukhovich, I. Shvartsman, The approximate principle in constrained optimal control, SIAM, 43 (2004), 1037–1062. http://dx.doi.org/10.1137/S0363012903433012 doi: 10.1137/S0363012903433012 |
[17] | B. S. Mordukhovich, Variational analysis and generalized differentiation, Berlin: Springer-Verlag, 2005. http://dx.doi.org/10.1007/s10957-006-9142-4 |
[18] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Mathematical theory of optimal processes, Nauka, Moskow, 1969. |
[19] | X. Wang, B. Liu, Singular linear quadratic optimal control problem for stochastic nonregular descriptor systems, Asian J. Control, 20 (2018), 1–11. http://dx.doi.org/10.1002/asjc.1660 doi: 10.1002/asjc.1660 |
[20] | X. Wang, Optimal control of stochastic singular systems and generalized differential Riccati equations, Unpublished work. |
[21] | H. S. Wu, Generalized maximum principle for optimal control of generalized state-space systems, Int. J. Control, 47 (1988), 373–380. http://dx.doi.org/10.1080/00207178808906016 doi: 10.1080/00207178808906016 |
[22] | H. Xu, K. Mizukami, Hamilton-Jacobi equation for descriptor systems, Syst. Control Lett., 21 (1993), 321–327. http://dx.doi.org/10.1016/0167-6911(93)90075-H doi: 10.1016/0167-6911(93)90075-H |
[23] | H. Xu, K. Mizukami, Derivation of a maximum principle for descriptor systems without an admissible initial condition assumption, J. Franklin Inst., 332 (1995), 633–642. http://dx.doi.org/10.1016/0016-0032(95)00067-4 doi: 10.1016/0016-0032(95)00067-4 |
[24] | X. H. Zhang, Q. L. Zhang, Optimal control of discrete generalized linear systems, J. Northeast. Univ., 19 (1998), 435–438. |