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1. Introduction

Some applied problems in fields such as the economy, military defense and chemistry are inherently
multistage optimization problems. In such problems, there are several stages that can be connected
to each other by additional conditions, and they are characterized by their own equations, controls,
constants, etc. And recently, descriptor systems which are generalizations of differential equations
to singular leading-term case, have aroused a lot of attention due to their applications frequently in
different research areas. In this paper, we consider a general two-step descriptor system with initial
conditions containing control parameters of the form Ei ẋi(t) = fi(t, xi, ui), t ∈ [ti−1, ti], i = 1, 2,

x1(t0) = g1(v1), x2(t1) = g2(x1(t1), v2),

where Ei ∈ Rn×n, i = 1, 2, are constant singular matrices, and t0 < t1 < t2 are all given.
For steps nonlinear differential equations, that is Ei = Ii, there have been some researches.

Regarding necessary conditions for steps systems in the smooth cost functional, it can be found
in [9,10]. While for the nonsmooth discrete case, [14] has investigated its optimal control problem.
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What’s more, the problem of control with stepwise structure, which is described by a system of
difference and integro-differential equations of the Volterra type has been considered in [17]. Under
the assumption about openness of control domain and some modifications of the increment method,
necessary conditions of optimality of the first- and second-order have been established simultaneously.

On the other hand, for one-step descriptor system case, the correlation theory is relatively mature [2–
4]. Many researchers have investigated corresponding optimal control problems by means of dynamic
programming or maximum principle (see, for example, [7,9,15,21–23] and references therein), and
we have also done some works recently [19,20]. However, what we should point out is that these
conditions are restricted to first-order necessary conditions, and there are no further discussions until
now.

Being directly inspired by the works mentioned above, the purpose of this paper is to study the
optimal control problem for two-step nonlinear descriptor system. With the methods of classical
calculus of variations and nonsmooth analysis, we firstly establish the first-order necessary conditions
in smooth and nonsmooth cases. Then we introduce the definitions of index and Drazin inverse for
matrix, which are crucial to give the generalized second-order necessary conditions for steps descriptor
systems. The main difficulty throughout our paper is that we should establish the proper formula of
general solutions for descriptor system. It is worth mentioning that our second-order conditions consist
of constraints on endpoints, which are resulted from the matching conditions. Moreover, we have
pointed out that the unfixed switching point case can be transformed into a fixed one by some proper
transformations.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries. First-order
necessary optimality conditions are established in Section 3. In Section 4, we derive the generalized
second-order necessary conditions for linear two-step descriptor systems. The main tools are the
employment of Drazin inverse and index for matrices. Then in Section 5, we give some discussion
for unfixed switching point case. Finally, the conclusion is made in Section 6.

2. Preliminaries

Firstly, some definitions for nonsmooth analysis are recalled, which are necessary for the discussion
later.

Given a nonempty set Ω ⊂ Rn, consider the associated distance function

dist(x; Ω) = inf
w∈Ω
||x − w||,

and define Euclidean projector of x onto Ω by Π(x; Ω) := {w ∈ Ω| ||x − w|| = dist(x; Ω)}. If the set Ω

is closed and bounded, then the set Π(x; Ω) is nonempty for every x ∈ Rn. The normal cone in finite
dimensional space is defined using the Euclidean projector:

N(x̄; Ω) := lim sup
x→x̄

[cone(x − Π(x,Ω))],

while the basic subdifferential ∂φ(x̄) is defined geometrically via the normal cone to the epigraph of
φ. Here it is assumed that φ is a real finite function, ∂φ(x̄) := {x∗ ∈ Rn|(x∗,−1) ∈ N((x̄, φ(x̄)); epiφ)}
and epiφ := {(x, µ) ∈ Rn+1|µ ≥ φ(x)} is the epigraph of φ. This nonconvex cone to closed sets and
corresponding subdifferential of lower semicontinuous extended real-valued functions satisfying these
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requirements were introduced by Mordukhovich at the beginning of 1975. The initial motivation came
from the intention to derive necessary optimality conditions for optimal control problems with endpoint
geometric constraints by passing to the limit from free endpoint control problems, which are much
easier to handle.

To start our discussion, first we have describe certain points about functional analysis and
nonsmooth analysis construction. For more infourmation we refer the readers to [17]. Note that this
cone is nonconvex [10,16] and for the locally Lipschitz function, the convex hull of subdifferential is a
Clarke generalized subdifferential, φ̄k(x0) = co∂φ(x0). If φk is lower semicontinuous around x, then its
basic subdifferential can be shown by ∂φ(x0) = lim sup

x→x0
∂̂φ(x). Here,

∂̂φ(x0) := {x∗ ∈ Rn| lim inf
u→x0

φ(u) − φ(x0) − 〈x∗, u − x0〉

|u − x0|
≥ 0}

is the Frechet subdifferential. By using plus-minus symmetric constructions, we can write

∂+φ(x0) := −∂(−φ)(x0), ∂̂+φ(x0) := −∂(−φ̂)(x0),

which are called basic superdifferential and Frechet superdifferential, respectively. Here,

∂̂φ+(x0) := {x∗ ∈ Rn| lim sup
u→x0

φ(u) − φ(x0) − 〈x∗, u − x0〉

|u − x0|
≤ 0}.

What we should point out is that for a locally Lipschitz function, the basic subdifferential and the
Frechet subdifferential may be different.

If φ is Lipschitz continuous around point x0, then the strict differentiability of the function φ at x0

is equivalent to ∂φ(x0) = ∂+φ(x0) = {∇φ(x0)}. If ∂φ(x0) = ∂̂φ(x0), then this function is lower regular
at x0. Symmetrically, we can give upper regularity of the function at the point by using the definitions
of superdifferential and Frechet superdifferential. Also, if φ is locally Lipschitz continuous around the
given point and upper regular at this point, then the Frechet superdifferential is not empty at this point
and coincides with the Clarke subdifferential at this point.

By using all these nonsmooth analysis tools, we will try to find the superdifferential form of the
necessary optimality conditions for the steps descriptor systems in the following form.

min J(u, v) =

2∑
i=1

ϕi(xi(ti)) +

2∑
i=1

∫ ti

ti−1

f 0
i (t, xi, ui)dt, (2.1)

subject to 

Ei ẋi(t) = fi(t, xi, ui), t ∈ [ti−1, ti] = Ti, i = 1, 2,

x1(t0) = g1(v1),

x2(t1) = g2(x1(t1), v2),

ui(t) ∈ Ui ⊂ Rr, t ∈ Ti, i = 1, 2,

vi ∈ Vi ⊂ Rq, i = 1, 2,

(2.2)

where Ei ∈ Rn×n, i = 1, 2, are constant matrices with rank(Ei) = ri ≤ n; fi(t, xi, ui), i = 1, 2, are given
n-dimensional vector-valued functions, which are at least twice continuously partially differentiable
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with respect to their variables; g1(v1) and g2(x1, v2) are both given vector-valued functions that are
at least twice continuously differentiable; f 0

i (t, xi, ui), i = 1, 2, are continuous, at least continuously
partially differentiable vector-valued functions with respect to their variables; ϕi, i = 1, 2, are given
twice continuously differentiable scalar functions. ui(t), i = 1, 2, are r-dimensional measurable and
bounded vector functions of controls, and vi, i = 1, 2, are q-dimensional control parameters. Ui,Vi are
assumed to be nonempty and bounded open sets for each i, i = 1, 2.

We call a pair (u1(t), u2(t), v1, v2) ≡ (u(t), v) with above properties as admissible control, and the
corresponding absolutely continuous solution (x1(t), x2(t)) ≡ x(t) to system (2.2) is called an admissible
trajectory.

An admissible control (u(t), v) that solves the problem of minimizing functional (2.1) under
constraints (2.2) is called an optimal control, and the corresponding solution x(t) to systems (2.1)
and (2.2) is called an optimal trajectory. For the fixed admissible process (x0, u0, v0), we introduce the
following notations:

Hi(t, xi, ui, ψ
0
i ) = ψ0∗

i fi(t, xi, ui) − f 0
i (t, xi, ui),

∂Hi[t]
∂ui

=
∂Hi(t, x0

i , u
0
i , ψ

0
i )

∂ui
,
∂Hi[t]
∂xi

=
∂Hi(t, x0

i , u
0
i , ψ

0
i )

∂xi
,

∆v1g1(v1) = g1(v1) − g1(v0
1),

∆v2g2(x0
1(t1), v0

2) = g2(x0
1(t1), v2) − g2(x0

1(t1), v0
2),

L1(v1, ψ
0
1(t0)) = ψ0∗

1 (t0)E1g1(v1),
L2(x0

1(t1), v2, ψ
0
2(t1)) = ψ0∗

2 (t1)E2g2(x0
1(t1), v2).

Remark 2.1. It is worth pointing out that more general problem with multistage processes could also
be considered, but for simplicity of presentation, we analyze the problem stated above.

3. First-order necessary conditions

In the following, first-order necessary conditions for optimal control problems (2.1) and (2.2) will
be established by using nonsmooth analysis and variational techniques.

Theorem 3.1. Let ϕi is Frechet superdifferentiable at the point x0
i (ti) and (u0(t), v0, x0(t)) be an optimal

solution to the control problems (2.1) and (2.2). Then for every element from Frechet superdifferential
x∗i ∈ ∂̂

+ϕ(x0
i (ti)), i = 1, 2, there are vector functions ψi(t), i = 1, 2 such that the following conditions

holds:

∂Hi[θ]
∂ui

= 0, for all ui(t) ∈ Ui, i = 1, 2, θ ∈ Ti,

∂L1(v1, ψ
0
1(t0))

∂v1
= 0, ∀ v1 ∈ V1,

∂L2(x0
1(t1), v2, ψ

0
2(t1))

∂v2
= 0, ∀ v2 ∈ V2,
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where ψ0
i (t), i = 1, 2, are adjoint trajectories satisfying

E∗i ψ̇
0
i (t) = −∂Hi[t]

∂xi
, i = 1, 2,

E∗1ψ
0
1(t1) = −x∗1 +

∂L2(x0
1(t1),v0

2,ψ
0
2(t1))

∂x1
,

E∗2ψ
0
2(t2) = −x∗2,

and θ is an arbitrary regular point (see [18]) of u0(t).

Proof. Take arbitrary element from Frechet superdifferential x∗i ∈ ∂̂
+ϕi(x0

i (ti)), i = 1, 2 and employ the
smooth variational description of −x∗i from assertion (i) of Theorem 1.88 (see [17]) to the subgradients
−x∗i ∈ ∂̂

+(−ϕi(x0
i (ti))). As a result, we find functions si for i = 1, 2 satisfying the relations

si(x0
i (ti)) = ϕi(x0

i (ti)), si(xi(t)) ≥ ϕi(xi(t))

in some neighbourhood of x0
i (ti) and such that each of them is Frechet differentiable at x0

i (ti) with
∇si(x0

i (ti)) = x∗i , i = 1, 2. It is easy to check that x0
i (ti) is a local solution to the following optimization

problem of types (2.1) and (2.2) but with cost continuously differentiable around x0
i (ti). This means

that we deduce the optimal control problems (2.1) and (2.2) with the nonsmooth cost functional to the
smooth cost functional data:

min J′(u, v) =

2∑
i=1

si(xi(ti)) +

2∑
i=1

∫ ti

ti−1

f 0
i (t, xi, ui)dt (3.1)

subject to condition (2.2). Thus, by using the Taylor formula, for any admissible values of the control
and the parameter (u, v) and optimal value of the control and the parameter (u0, v0), the increment of
cost functional ∆J′ can be written in the form:

∆J′(u0, v0)
= J′(u, v) − J′(u0, v0)

=

2∑
i=1

[si(xi(ti)) − si(x0
i (ti))] +

2∑
i=1

∫ ti

ti−1

[ f 0
i (t, xi, ui) − f 0

i (t, x0
i , u

0
i )]dt

=

2∑
i=1

[si(xi(ti)) − si(x0
i (ti))] +

2∑
i=1

[ψ0∗
i (ti)Ei∆xi(ti) − ψ0∗

i (ti−1)Ei∆xi(ti−1)]

−

2∑
i=1

∫ ti

ti−1

[Hi(t, xi, ui, ψ
0
i ) − Hi(t, x0

i , u
0
i , ψ

0
i )]dt −

2∑
i=1

∫ ti

ti−1

ψ̇0∗
i (t)Ei∆xi(t)dt, (3.2)

whence if
∆x1(t0) = g1(v1) − g1(v0

1), ∆x2(t1) = g2(x1(t1), v2) − g2(x0
1(t1), v0

2).

Then, after some calculations, we can rewrite (3.2) as

∆J′(u0, v0)

=

2∑
i=1

[si(xi(ti)) − si(x0
i (ti))] +

2∑
i=1

ψ0∗
i (ti)Ei∆xi(ti)
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−

2∑
i=1

∫ ti

ti−1

[Hi(t, xi, ui, ψ
0
i ) − Hi(t, x0

i , u
0
i , ψ

0
i )]dt −

2∑
i=1

∫ ti

ti−1

ψ̇0∗
i (t)Ei∆xi(t)dt

−[L1(v1, ψ
0
1(t0)) − L1(v0

1, ψ
0
1(t0))] − [L2(x1(t1), v2, ψ

0
2(t1)) − L2(x0

1(t1), v0
2, ψ

0
2(t1))]

=

2∑
i=1

[si(xi(ti)) − si(x0
i (ti))] +

2∑
i=1

ψ0∗
i (ti)Ei∆xi(ti) −

2∑
i=1

∫ ti

ti−1

ψ̇0∗
i (t)Ei∆xi(t)dt

−

2∑
i=1

∫ ti

ti−1

[Hi(t, xi, ui, ψ
0
i ) − Hi(t, x0

i , ui, ψ
0
i )]dt −

2∑
i=1

∫ ti

ti−1

∂H∗i [t]
∂ui

∆ui(t)dt

−
∂L∗1(v1, ψ

0
1(t0))

∂v1
∆v1 −

∂L∗2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
∆v2

−[L2(x1(t1), v2, ψ
0
2(t1)) − L2(x0

1(t1), v2, ψ
0
2(t1))]. (3.3)

On the other hand, in consideration of ∇si(x0
i (ti)) = x∗i , i = 1, 2 and taking ψ0

i (t), i = 1, 2 as solutions
of the following equations: 

E∗i ψ̇
0
i (t) = −∂Hi[t]

∂xi
, i = 1, 2,

E∗1ψ
0
1(t1) = −x∗1 +

∂L2(x0
1(t1),v0

2,ψ
0
2(t1))

∂x1
,

E∗2ψ
0
2(t2) = −x∗2,

(3.4)

then the increment formula (3.3) reduces to a simpler one:

∆J′(u0, v0) = −

2∑
i=1

∫ ti

ti−1

∂Hi[t]
∂ui

∆ui(t)dt −
∂L1(v0

1, ψ
0
1(t0))

∂v1
∆v1 −

∂L2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
∆v2

+η1(u0, v0; ∆u,∆v), (3.5)

where by definition

η1(u0, v0; ∆u,∆v) =

2∑
i=1

∫ ti

ti−1

∂H∗i [t]
∂xi

∆xi(t)dt − o3(||∆x1(t1)||) +

2∑
i=1

oi
1(||∆xi(ti)||)

−
∂L∗2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x1
∆x1(t1) −

2∑
i=1

∫ ti

ti−1

oi
2(||∆xi(t)||)dt.

Here oi(·), i = 1, 2, 3 are defined by the expressions
si(xi(ti)) − si(x0

i (ti)) = x∗i (ti)∆xi(ti) + oi
1(||∆xi(ti)||), i = 1, 2,

Hi(t, xi, ui, ψ
0
i ) − Hi(t, x0

i , ui, ψ
0
i ) =

∂H∗i (t,x0
i ,ui,ψ

0
i )

∂xi
∆xi(t) + oi

2(||∆xi(t)||), i = 1, 2,

L2(x1(t1), v2, ψ
0
2(t1)) − L2(x0

1(t1), v2, ψ
0
2(t1)) =

∂L∗2(x0
1(t1),v2,ψ

0
2(t1))

∂x1
∆x1(t1) + o3(||∆x1(t1)||).

A special increment of the control (u0(t), v0) is defined as

∆ui(t, ε) = εδui(t), ∆vi(ε) = εδvi, i = 1, 2,

where ε is a very small amount, δui(t) ∈ Rr(i = 1, 2) are arbitrary measurable bounded vector functions
and δvi ∈ Rq(i = 1, 2) are arbitrary constant vectors. Then the pair (δu(t) = (δu1(t), δu2(t)), δv =

(δv1, δv2)) is called an admissible variation of the control (u0(t), v0).
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By taking into account (3.5) and following the schemes in [12], it can be shown that the first-order
classical variations of function (3.1) have the form:

δ1J′(u0, v0) = J′(u0(t) + ∆u(t, ε)) − J′(v0 + ∆v(ε))

= −

2∑
i=1

∫ ti

ti−1

∂Hi[t]
∂ui

δui(t)dt −
∂L1(v0

1, ψ
0
1(t0))

∂v1
δv1

−
∂L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
δv2. (3.6)

Since control domains Ui and Vi(i = 1, 2) are open along the optimal process (u0(t), v0, x0(t)) for all
admissible variations (δu(t), δv), the first variations of function (3.1) is zero, i.e.,

−

2∑
i=1

∫ ti

ti−1

∂Hi[t]
∂ui

δui(t)dt −
∂L1(v0

1, ψ
0
1(t0))

∂v1
δv1 −

∂L2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
δv2 = 0. (3.7)

Due to the arbitrary and independent of δui(t) and δvi, identity (3.7) yields the conclusion. This
completes the proof.

Theorem 3.2. Assume that ϕi is locally Lipschitz continuous and upper regular around at x0
i (ti). Let

(u0(t), v0, x0(t)) be an optimal solution to the control problems (2.1) and (2.2). Then, for any x̃i ∈

∂̄ϕi(x0
i (ti)), the following conditions should be true:

∂Hi[θ]
∂ui

= 0, for all ui(t) ∈ Ui, i = 1, 2, θ ∈ Ti,

∂L1(v1, ψ
0
1(t0))

∂v1
= 0, ∀ v1 ∈ V1,

∂L2(x0
1(t1), v2, ψ

0
2(t1))

∂v2
= 0, ∀ v2 ∈ V2,

where ψ0
i (t), i = 1, 2, are adjoint trajectories and satisfying (3.4).

Proof. From the nonsmooth analysis in Section 2, it is a known fact that if the function is upper regular,
the Frechet superdifferential ∂̂+ϕ coincides with the Clarke generalized gradient ∂̄ϕ, so the conclusion
is obvious. This completes the proof.

In particular, if we take smoothness on the cost functional ϕi, the following corollaries can be
obtained obviously.

Corollary 3.1. If Ui,Vi, i = 1, 2, are still given nonempty and bounded open sets, then for the optimality
of the pair (u0(t), v0), it is necessary that following equations hold:

∂H∗i [θ]
∂ui

= 0, θ ∈ Ti, i = 1, 2,

∂L∗1(v0
1, ψ

0
1(t0))

∂v1
= 0,

∂L∗2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
= 0,
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where ψ0
i (t), i = 1, 2, are adjoint trajectories and satisfying

E∗i ψ̇
0
i (t) = −∂Hi[t]

∂xi
, i = 1, 2,

E∗1ψ
0
1(t1) = −

∂ϕ1(x1(t1))
∂x1(t1) +

∂L2(x0
1(t1),v0

2,ψ
0
2(t1))

∂x1
,

E∗2ψ
0
2(t2) = −

∂ϕ2(x2(t2))
∂x2(t2) ,

(3.8)

Corollary 3.2. If Ui,Vi, i = 1, 2, are given nonempty, bounded and convex sets, then for the optimality
of the pair (u0(t), v0), it is necessary that the following inequalities hold:∫ ti

ti−1

∂H∗i [t]
∂ui

(ui(t) − u0
i (t))dt ≤ 0, for all ui(t) ∈ Ui, t ∈ Ti, i = 1, 2,

∂L∗1(v0
1, ψ

0
1(t0))

∂v1
(v1 − v0

1) ≤ 0, for all v1 ∈ V1,

∂L∗2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
(v2 − v0

2) ≤ 0, for all v2 ∈ V2,

where ψ0
i (t), i = 1, 2, are adjoint trajectories and satisfying (3.8).

4. Generalized second-order necessary conditions

In this section, we will give some second-order necessary optimality conditions. In particular, we
assume that the functions in problems (2.1) and (2.2) are smooth enough and the sets Ui,Vi, i = 1, 2,
are nonempty, bounded and convex.

By means of Taylor’s formula which expands to the second-order derivatives and similar with the
discussion above, we can obtain

∆J(u0, v0)

=
1
2

2∑
i=1

∆x∗i (ti)
∂2ϕi(x0

i (ti))
∂x2

i

∆xi(ti) −
2∑

i=1

∫ ti

ti−1

∂H∗i [t]
∂ui

∆ui(t)dt

−
1
2

2∑
i=1

∫ ti

ti−1

[
∆x∗i (t)

∂2Hi[t]
∂x2

i

∆xi(t) + 2∆u∗i (t)
∂2Hi[t]
∂ui∂xi

∆xi(t) + ∆u∗i (t)
∂2Hi[t]
∂u2

i

∆ui(t)
]
dt

−
∂L∗1(v0

1, ψ
0
1(t0))

∂v1
∆v1 −

1
2

∆v∗1
∂2L1(v0

1, ψ
0
1(t0))

∂v2
1

∆v1 −
∂L∗2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
∆v2

−
1
2

[
∆x∗1(t1)

∂2L2(x0
1(t1), v0

2, ψ
0
2(t1))

∂x2
1

∆x1(t1) + 2∆v∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2∂x1
∆x1(t1)

+∆v∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
2

∆v2

]
+ η2(u0, v0; ∆u,∆v),

where

η2(u0, v0; ∆u,∆v) =

2∑
i=1

∫ ti

ti−1

oi([||∆xi(t)|| + ||∆ui(t)||]2)dt + o3(
2∑

i=1

||∆xi(ti)||2)

−o4(||∆v1||
2) − o5([||∆x1(t1)|| + ||∆v2||]2).
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Moreover, values oi, i = 1, . . . , 5 are determined correspondingly from decompositions

ϕi(xi(ti)) − ϕi(x0
i (ti))

=
∂ϕ∗i (x0

i (ti))
∂xi

∆xi(ti) +
1
2

∆x∗i (ti)
∂2ϕi(x0

i (ti))
∂x2

i

∆xi(ti) + o3(||∆xi(ti)||2), i = 1, 2,

Hi(t, xi, ui, ψ
0
i ) − Hi(t, x0

i , u
0
i , ψ

0
i )

=
∂H∗i [t]
∂xi

∆xi(t) +
∂H∗i [t]
∂ui

∆ui(t) +
1
2

[∆x∗i (t)
∂2Hi[t]
∂x2

i

∆xi(t) + 2∆u∗i (t)
∂2Hi[t]
∂ui∂xi

∆xi(t)

+∆u∗i (t)
∂2Hi[t]
∂u2

i

∆ui(t)] + oi([||∆xi(t)|| + ||∆ui(t)||]2), i = 1, 2,

L1(v1, ψ
0
1(t0)) − L1(v0

1, ψ
0
1(t0))

=
∂L∗1(v0

1, ψ
0
1(t0))

∂v1
∆v1 +

1
2

∆v∗1
∂2L1(v0

1, ψ
0
1(t0))

∂v2
1

∆v1 + o4(||∆v1||
2),

L2(x1(t1), v2, ψ
0
2(t1)) − L2(x0

1(t1), v0
2, ψ

0
2(t1))

=
∂L∗2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x1
∆x1(t1) +

∂L∗2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
∆v2

+
1
2

[∆x∗1(t1)
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

∆x1(t1) + 2∆v∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2∂x1
∆x1(t1)

+∆v∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
2

∆v2] + o5([||∆x1(t1)|| + ||∆v2||]2).

Let us determine a special increment of the optimal control (u0(t), v0) as before,

∆ui(t, ε) = ε(ui(t) − u0
i (t)) = εδui(t), ∆vi(ε) = ε(vi − v0

i ) = εδvi,

where ui(t) ∈ Ui, t ∈ Ti, i = 1, 2, are arbitrary measurable and bounded vector functions, and vi ∈ Vi, i =

1, 2, are arbitrary constant vectors. Then following the schemes from [12], we can show that

∆Jε(u0, v0) = J(u0(t) + ∆u(t, ε), v0 + ∆v(ε)) − J(u0(t), v0)

= −ε
[ 2∑

i=1

∫ ti

ti−1

∂H∗i [t]
∂ui

δui(t)dt +
∂L∗1(v0

1, ψ
0
1(t0))

∂v1
δv1 +

∂L∗2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
δv2

]
+
ε2

2

{ 2∑
i=1

l∗i (ti)
∂2ϕi(x0

i (ti))
∂x2

i

li(ti) − δv∗1
∂2L1(v0

1, ψ
0
1(t0))

∂v2
1

δv1

−

2∑
i=1

∫ ti

ti−1

[
l∗i (t)

∂2Hi[t]
∂x2

i

li(t) + 2δu∗i (t)
∂2Hi[t]
∂ui∂xi

li(t) + δu∗i (t)
∂2Hi[t]
∂u2

i

δui(t)
]
dt

−l∗1(t1)
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

l1(t1) − 2δv∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2∂x1
l1(t1)

−δv∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
2

δv2

}
+ o(ε2), (4.1)
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where li(t), i = 1, 2, are the variations of the trajectories being solutions of the variational equations
Eil̇i(t) =

∂ fi[t]
∂xi

li(t) +
∂ fi[t]
∂ui

δui(t), i = 1, 2,

l1(t0) =
∂g1(v0

1)
∂v1

δv1,

l2(t1) =
∂g2(x0

1(t1),v0
2)

∂x1
l1(t1) +

∂g2(x0
1(t1),v0

2)
∂v2

δv2.

(4.2)

As in corollary 3.2, the first-order necessary conditions have been established. Following [11], we
give the following definition for descriptor systems.

Definition 4.1. We call the admissible control (u0(t), v0) a quasisingular control in the problems (2.1)
and (2.2), if the following relations hold along the process (u0(t), v0, x0(t)):

∂H∗i [θ]
∂ui

(ui − u0
i (θ)) = 0 for all ui(t) ∈ Ui, θ ∈ [ti−1, ti), i = 1, 2, (4.3a)

∂L∗1(v0
1, ψ

0
1(t0))

∂v1
(v1 − v0

1) = 0 for all v1 ∈ V1, (4.3b)

∂L∗2(x0
1(t1), v0

2, ψ
0
2(t1))

∂v2
(v2 − v0

2) = 0 for all v2 ∈ V2. (4.3c)

As we see, when these relations hold, i.e., in a quasisingular case, the statement of Corollary 3.2
loses its sense. Expansion (4.1) with (4.3) yields the following inequality along the quasisingular
optimal control (u0(t), v0) for all (u(t), v):

2∑
i=1

l∗i (ti)
∂2ϕi(x0

i (ti))
∂x2

i

li(ti) − l∗1(t1)
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

l1(t1)

−

2∑
i=1

∫ ti

ti−1

[
l∗i (t)

∂2Hi[t]
∂x2

i

li(t) + 2δu∗i (t)
∂2Hi[t]
∂ui∂xi

li(t) + δu∗i (t)
∂2Hi[t]
∂u2

i

δui(t)
]
dt

−2δv∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2∂x1
l1(t1) − δv∗1

∂2L1(v0
1, ψ

0
1(t0))

∂v2
1

δv1

−δv∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
2

δv2 ≥ 0. (4.4)

Obviously, inequality (4.4) is an implicit necessary optimality condition for quasisingular controls.
However, this result yields various necessary optimality conditions for quasisingular controls. To this
end, we will need representations of the solutions of problem (4.2). Due to the limit of our knowledge,
we only consider the linear time-invariant case of function fi(t, xi, ui), i = 1, 2, that is,

fi(t, xi, ui) = Aixi(t) + Biui(t) + gi(t), i = 1, 2. (4.5)

That is ∂ fi[t]
∂xi

= Ai,
∂ fi[t]
∂ui

= Bi, i = 1, 2, gi(t) is the inhomogeneous term, and we are going to continue
with the notations previously.

Definition 4.2. [8] Let A be a linear transformation on Cn. The smallest non-negative integer k such
that rank(Ak) = rank(Ak+1), is called the index of A and is denoted by Ind(A).
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Definition 4.3. [8] If A ∈ Cn×n with IndA = k, and if AD ∈ Cn×n is such that

ADAAD = AD, AAD = ADA, Ak+1AD = Ak,

then AD is called the Drazin inverse of A.
Now we give some assumptions, which are necessary for the discussion later.

(H1) (Ei, Ai) is regular for each i, i = 1, 2, i.e., det(λiEi + Ai) , 0 for some complex number λi.

(H2) The commutativity conditions hold: EiAi = AiEi, i = 1, 2.

Remark 4.1. (H1) is a basic assumption, which can guarantee the consistency of system (2.2), that
is, it has at most one solution x(t) satisfying the required initial conditions. Under this assumption, it
obvious that (H2) is not restrictive [24].

Under the above conditions, the solution of system (4.2) can be given by ([1])

l1(t) = eED
1 A1(t−t0)E1ED

1
∂g1(v0

1)
∂v1

δv1 +
∫ t

t0
eED

1 A1(t−s)ED
1
∂ f1[s]
∂u1

δu1(s)ds

+(I − E1ED
1 )

k1−1∑
j=0

(−1) j(E1AD
1 ) jAD

1
∂ f1[t]
∂u1

δu j
1(t)

, M1(t)δv1 +
∫ t

t0
R1(t, s)∂ f1[s]

∂u1
δu1(s)ds +

k1−1∑
j=0

T 1
j
∂ f1[t]
∂u1

δu j
1(t), t ∈ T1,

l2(t) = eED
2 A2(t−t1)E2ED

2 [∂g2(x0
1(t1),v0

2)
∂x1

l1(t1) +
∂g2(x0

1(t1),v0
2)

∂v2
δv2]

+(I − E2ED
2 )

k2−1∑
j=0

(−1) j(E2AD
2 ) jAD

2
∂ f2[t]
∂u2

δu j
2(t) +

∫ t

t1
eED

2 A2(t−s)ED
2
∂ f2[s]
∂u2

δu2(s)ds

, M2(t)l1(t1) + M3(t)δv2 +
k2−1∑
j=0

T 2
j
∂ f2[t]
∂u2

δu j
2(t) +

∫ t

t1
R2(t, s)∂ f2[s]

∂u2
δu2(s)ds, t ∈ T2.

(4.6)

where Ind(Ei) = ki.

Remark 4.2. For the singular matrices Ei, i = 1, 2, without loss of generality, we can only consider the
following form:

Ei =

(
S i 0
0 0

)
, i = 1, 2,

where S i ∈ Rri×ri , i = 1, 2, are nonsingular matrices. Otherwise, we can firstly take some
transformations. Thus, we have Ind(Ei) = 1, i = 1, 2.

Taking into account the independence of the variations (δu(t), δv) of (u0(t), v0), we consider four
possible cases in the following.

Case I. Let u2(t) = u0
2(t), t ∈ T2; vi = v0

i , i = 1, 2. Then inequality (4.4) becomes

2∑
i=1

l∗i (ti)
∂2ϕi(x0

i (ti))
∂x2

i

li(ti) −
2∑

i=1

∫ ti

ti−1

l∗i (t)
∂2Hi[t]
∂x2

i

li(t)dt − 2
∫ t1

t0
δu∗1(t)

∂2H1[t]
∂u1∂x1

l1(t)dt

−

∫ t1

t0
δu∗1(t)

∂2H1[t]
∂u2

1

δu1(t)dt − l∗1(t1)
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

l1(t1) ≥ 0. (4.7)
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Representations (4.6) yields l1(t) =
∫ t

t0
R1(t, s)∂ f1[s]

∂u1
δu1(s)ds + T 1

0
∂ f1[t]
∂u1

δu1(t), t ∈ T1,

l2(t) = M2(t)l1(t1), t ∈ T2.
(4.8)

Using the scheme from [11,12] and the Dirichlet formula [11], the following identities can be
proved: ∫ t1

t0
l∗1(t)

∂2H1[t]
∂x2

1

l1(t)dt

=

∫ t1

t0

∫ t1

t0
δu∗1(τ)

∂ f ∗1 [τ]
∂u1

[ ∫ t1

max(τ,s)
R∗1(t, τ)

∂2H1[t]
∂x2

1

R1(t, s)dt
]
∂ f1[s]
∂u1

δu1(s)dsdτ

+2
∫ t1

t0

[ ∫ t1

t0
δu∗1(τ)

∂ f ∗1 [τ]
∂u1

T 1∗
0
∂2H1[τ]
∂x2

1

R1(τ, t)dτ
]
∂ f1[t]
∂u1

δu1(t)dt

+

∫ t1

t0
δu∗1(t)

∂ f ∗1 [t]
∂u1

T 1∗
0
∂2H1[t]
∂x2

1

T 1
0
∂ f1[t]
∂u1

δu1(t)dt,∫ t2

t1
l∗2(t)

∂2H2[t]
∂x2

2

l2(t)dt

=

[ ∫ t1

t0
R1(t1, s)

∂ f1[s]
∂u1

δu∗1(s)ds
]∗ ∫ t2

t1
M∗

2(t)
∂2H2[t]
∂x2

2

M2(t)dt
[ ∫ t1

t0
R1(t1, s)

∂ f1[s]
∂u1

δu∗1(s)ds
]

+2δu∗1(t1)
∂ f ∗1 [t1]
∂u1

T 1∗
0

[ ∫ t2

t1
M∗

2(t)
∂2H2[t]
∂x2

2

M2(t)dt
][ ∫ t1

t0
R1(t1, s)

∂ f1[s]
∂u1

δu1(s)ds
]

+δu∗1(t1)
∂ f ∗1 [t1]
∂u1

T 1∗
0

[ ∫ t2

t1
M∗

2(t)
∂2H2[t]
∂x2

2

M2(t)dt
]
T 1

0
∂ f1[t1]
∂u1

δu1(t1),∫ t1

t0
δu∗1(t)

∂2H1[t]
∂u1∂x1

l1(t)dt

=

∫ t1

t0

[ ∫ t1

t0
δu∗1(τ)

∂2H1[τ]
∂u1∂x1

R1(τ, t)dτ
]
∂ f1[t]
∂u1

δu1(t)dt +

∫ t1

t0
δu∗1(t)

∂2H1[t]
∂u1∂x1

T 1
0
∂ f1[t]
∂u1

δu1(t)dt.

Assuming

K11(τ, s) = −R∗1(t1, τ)
[∂2ϕ1(x0

1(t1))

∂x2
1

+ M∗
2(t2)

∂2ϕ2(x0
2(t2))

∂x2
2

M2(t2)

−
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

]
R1(t1, s) +

∫ t1

max(τ,s)
R∗1(t, τ)

∂2H1[t]
∂x2

1

R1(t, s)dt,

K1(t) =
∂2H1[t]
∂u2

1

+
∂2H1[t]
∂u1∂x1

T 1
0
∂ f1[t]
∂u1

+
∂ f ∗1 [t]
∂u1

T 1∗
0
∂2H1[t]
∂x2

1

T 1
0
∂ f1[t]
∂u1

,

K12(τ, t) =
∂2H1[τ]
∂u1∂x1

R1(τ, t) +
∂ f ∗1 [τ]
∂u1

T 1∗
0
∂2H1[τ]
∂x2

1

R1(τ, t),

K1 =

[∂2ϕ1(x0
1(t1))

∂x2
1

+ M∗
2(t2)

∂2ϕ2(x0
2(t2))

∂x2
2

M2(t2) −
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

]
,

K =

∫ t2

t1
M∗

2(t)
∂2H2[t]
∂x2

2

M2(t)dt − K1.
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then with (4.7) and (4.8) we have∫ t1

t0

∫ t1

t0
δu∗1(τ)

∂ f ∗1 [τ]
∂u1

K11(τ, s)
∂ f1[s]
∂u1

δu1(s)dsdτ +

∫ t1

t0
δu∗1(t)K1(t)δu1(t)dt

+2
∫ t1

t0

{ ∫ t1

t0
δu∗1(τ)K12(τ, t)dτ

}
∂ f1[t]
∂u1

δu1(t)dt

+

[ ∫ t1

t0
R1(t1, s)

∂ f1[s]
∂u1

δu1(s)ds
]∗ ∫ t2

t1
M∗

2(t)
∂2H2[t]
∂x2

2

M2(t)dt
[ ∫ t1

t0
R1(t1, s)

∂ f1[s]
∂u1

δu1(s)ds
]

+δu∗1(t1)
∂ f ∗1 [t1]
∂u1

T 1∗
0 K

[
2
∫ t1

t0
R1(t1, s)

∂ f1[s]
∂u1

δu1(s)ds + T 1
0
∂ f1[t1]
∂u1

δu1(t1)
]
≤ 0. (4.9)

Case II. If we assume that u1(t) = u0
1(t), t ∈ T1; vi = v0

i , i = 1, 2, inequality (4.4) becomes

l∗2(t2)
∂2ϕ2(x0

2(t2))

∂x2
2

l2(t2) − 2
∫ t2

t1
δu∗2(t)

∂2H2[t]
∂u2∂x2

l2(t)dt

−

∫ t2

t1
l∗2(t)

∂2H2[t]
∂x2

2

l2(t)dt −
∫ t2

t1
δu∗2(t)

∂2H2[t]
∂u2

2

δu2(t)dt ≥ 0.

Representation (4.6) yields l2(t) =
∫ t2

t1
R2(t, s)∂ f2[s]

∂u2
δu2(s)ds + T 2

0
∂ f2[t]
∂u2

δu2(t), t ∈ T2,

l1(t) ≡ 0, t ∈ T1.

Then similar with Case I, assuming that

K21(τ, s) =

∫ t2

max(τ,s)
R∗2(t, τ)

∂2H2[t]
∂x2

2

R2(t, s)dt,

K2(t) =
∂2H2[t]
∂u2

2

+
∂ f ∗2 [t]
∂u2

T 2∗
0
∂2H2[t]
∂x2

2

T 2
0
∂ f2[t]
∂u2

+ 2
∂2H2[t]
∂u2∂x2

T 2
0
∂ f2[t]
∂u2

,

K22(τ, t) =

[
∂2H2[τ]
∂u2∂x2

+
∂ f ∗2 [τ]
∂u2

T 2∗
0
∂2H2[τ]
∂x2

2

]
R2(τ, t), K2 = T 2∗

0

∂2ϕ2(x0
2(t2))

∂x2
2

,

we have∫ t2

t1

∫ t2

t1
δu∗2(τ)

∂ f ∗2 [τ]
∂u2

K21(τ, s)
∂ f2[s]
∂u2

δu2(s)dsdτ +

∫ t2

t1
δu∗2(t)K2(t)δu2(t)dt

+2
∫ t2

t1

{ ∫ t2

t1
δu∗2(τ)K22(τ, t)dτ

}
∂ f2[t]
∂u2

δu2(t)dt − δu∗2(t2)
∂ f ∗2 [t2]
∂u2

K2T 2
0
∂ f2[t2]
∂u2

δu2(t2)

−

[ ∫ t2

t1
R2(t2, s)

∂ f2[s]
∂u2

δu2(s)ds
]∗∂2ϕ2(x0

2(t2))

∂x2
2

[ ∫ t2

t1
R2(t2, s)

∂ f2[s]
∂u2

δu2(s)ds
]

−2δu∗2(t2)
∂ f ∗2 [t2]
∂u2

K2

∫ t2

t1
R2(t2, s)

∂ f2[s]
∂u2

δu2(s)ds ≤ 0. (4.10)

Case III. Let ui(t) = u0
i (t), t ∈ Ti, i = 1, 2; v2 = v0

2. Then inequality (4.4) becomes

2∑
i=1

l∗i (ti)
∂2ϕi(x0

i (ti))
∂x2

i

li(ti) −
2∑

i=1

∫ ti

ti−1

l∗i (t)
∂2Hi[t]
∂x2

i

li(t)dt
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−l∗1(t1)
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂x2
1

l1(t1) − δv∗1
∂2L1(v0

1, ψ
0
1(t0))

∂v2
1

δv1 ≥ 0. (4.11)

Representation (4.6) yields

l1(t) = M1(t)δv1, t ∈ T1; l2(t) = M2(t)l1(t1), t ∈ T2. (4.12)

Assuming

K3 = −M∗
1(t1)

∂2ϕ1(x0
1(t1))

∂x2
1

M1(t1) − M∗
1(t1)M∗

2(t2)
∂2ϕ2(x0

2(t2))

∂x2
2

M2(t2)M1(t1)

+
∂2L1(v0

1, ψ
0
1(t0))

∂v2
1

+

∫ t1

t0
M∗

1(t)
∂2H1[t]
∂x2

1

M1(t)dt

+

∫ t2

t1
M∗

1(t1)M∗
2(t)

∂2H2[t]
∂x2

2

M2(t)M1(t1)dt + M∗
1(t1)

∂2L2(x0
1(t1), v0

2, ψ
0
2(t1))

∂x2
1

M1(t1),

with (4.11) and (4.12) we get
δv∗1K3δv1 ≤ 0 for all v1 ∈ V1. (4.13)

Case IV. If we assume that ui(t) = u0
i (t), t ∈ Ti, i = 1, 2; v1 = v0

1, inequality (4.4) becomes

l∗2(t2)
∂2ϕ2(x0

2(t2))

∂x2
2

l2(t2) −
∫ t2

t1
l∗2(t)

∂2H2[t]
∂x2

2

l2(t)dt − δv∗2
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
2

δv2 ≥ 0.

Representation (4.6) yields

l2(t) = M3(t)δv2, t ∈ T2; l1(t) ≡ 0, t ∈ T1.

Assuming

K4 = −M∗
3(t2)

∂2ϕ2(x0
2(t2))

∂x2
2

M3(t2) +
∂2L2(x0

1(t1), v0
2, ψ

0
2(t1))

∂v2
2

+

∫ t2

t1
M∗

3(t)
∂2H2[t]
∂x2

2

M3(t)dt,

we can obtain
δv∗2K4δv2 ≤ 0 for all v2 ∈ V2. (4.14)

Thus, the following statement is proved.

Theorem 4.1. For quasisingular control (u0(t), v0) in the problems (2.1) and (2.2) with the linear
form (4.5) to be optimal, it is necessary that relations (4.9), (4.10), (4.13) and (4.14) hold.

Remark 4.3. These relations are established based on the second-order variations of the cost
functional, and compared with ordinary differential equations case, there are second-order constraints
for controls ui(ti), i = 1, 2, which come from the matching conditions. Thus, we call them generalized
second-order necessary optimality conditions for descriptor systems.
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Remark 4.4. In particular, if the matrix Ei = Ii, i = 1, 2, then we can easily known that Theorem 4.1
can be reduced to Theorem 2 in [6]. And for the case that the control domains Ui, vi, i = 1, 2, are
nonempty bounded open sets, similar discussion can be established. So our result generalized the
conclusions previously.

Remark 4.5. In fact, for specific problems, Theorem 4.1 may not be so complicated. For example, we
can consider the case:

E1 = E2 =

(
1 0
0 0

)
, A1 = A2 =

(
1 0
0 1

)
, B1 =

(
1
0

)
, B2 =

(
0
1

)
.

We choose x1(0) = v1, x2(1) = 0, ϕ1(x1(1)) = 2x2
1(1), f 0

1 = x2
1. Let us think about scenario III, and then

we are going to have to compute M1(t). After some manipulations we can get that

M1(1) = eE1A1 E1.

Obviously, the expression is simple, and next we direct use the inequality (4.13) merely.

5. Unknown switching point case

All the discussion above is based on a fact that this is an initial problem where the switching point t1

is fixed. In this section, we consider another different case:

Problem (I)

 min J(u, x, t1) =
2∑

i=1
ϕ(xi(ti)) +

2∑
i=1

∫ ti
ti−1

f 0
i (t, xi, ui)dt,

s.t. Ei ẋi = fi(t, xi, ui), t ∈ [ti−1, ti] = Ti, i = 1, 2,
(5.1)

where t1 is a unfixed switching point, the conditions x1(t0) = x0, x2(t2) = xT are given, and the others
are defined as before.

Similar with [14], assume new variable xn+1 corresponding to the switching instant t1. Let xn+1

satisfy

dxn+1

dt
= 0, xn+1(t0) = t1.

It means xn+1 is constant in [t0, t2]. Next, a new independent time variable τ is introduced as

t =

 t0 + (xn+1 − t0)τ, 0 ≤ τ < 1;

xn+1 + (t2 − xn+1)(τ − 1), 1 ≤ τ ≤ 2.

Note τ = 0 corresponds to t = t0, τ = 1 corresponds to t = t1, and τ = 2 to t = t2. By introducing xn+1

and τ, and substitutions yi(τ) = xi(t(τ)), vi(τ) = ui(t(τ)), i = 1, 2, the problem (5.1) can be transformed
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into the following form

Problem (II)



E1
dy1(τ)

dτ = (xn+1 − t0) f̃1(τ, y1, v1),

dxn+1
dτ = 0, xn+1(t0) = t1, τ ∈ [0, 1),

and
E2

dy2(τ)
dτ = (t2 − xn+1) f̃2(τ, y2, v2),

dxn+1
dτ = 0, xn+1(t0) = t1, τ ∈ [1, 2],

and minimizing functional takes the form

J̃(v, xn+1) = ϕ̃(y1(1), y2(1)) +
∫ 1

0
(xn+1 − t0) f̃ 0

1 (τ, y1, v1)dτ

+
∫ 2

1
(t2 − xn+1) f̃ 0

2 (τ, y2, v2)dτ,

(5.2)

with the corresponding initial conditions y1(0) = x0, y2(2) = xT .

Since xn+1 is unknown constant in the interval [0, 2], the dimension of Problem (II) will be same as
the dimension of the Problem (I). There is a one-to-one corresponding between admissible process
(t1, x(t), u(t)) and the admissible process (y(τ), v(τ)). That is, if the process (t0

1, x
0(t), u0(t)) gives

the minimum for (5.1), then the process (y0(τ), v0(τ)), which is obtained after transformation, gives
minimum value of (5.2), and vice versa.

For multiple unfixed switching points case, there is no difficulty in applying nonsmooth analysis
and the Variational techniques to the problems with several subsystems similarly. To verify the
efficiency of the procedure, readers can see [14] for details. Obviously, the equivalent problem is with
fixed switching point, and we can consider the couple (v, t1) as a new control. However, it is worth
mentioning that the transformed system is time-variant, so our generalized second-order necessary
optimality conditions can not be applied unfortunately.

6. Conclusions

We investigate a class of optimal control problems for multistage processes. By means of variational
techniques and nonsmooth analysis, the first-order necessary optimality conditions for two-steps
descriptor systems are established. Then, we also establish the generalized second-order necessary
conditions for linear steps descriptor systems by using the definitions of Drazin inverse and the index
for matrices. Finally, for the unfixed switching point case, some transformations can be implemented
to transform it into a fixed one.

However, it is worth mentioning that we establish the generalized second-order necessary conditions
for linear time-invariant steps descriptor systems only. The main difficulty for linear time-varying or
nonlinear descriptor systems is that there is no formula for their general solutions. On the other hand,
this paper discusses the continuous-time descriptor systems only. And we will leave these issues for
future research.
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Abbreviations

GDREs, generalized differential Riccati equations; GBDEs, generalized backward differential
equations; LQ, linear quadratic. Rn, n-dimension Euclidean space; “∗”, transpose of a matrix or
matric-valued function; “∇”, gradient of a function; “o”, infinitesimal of higher order; “∂”, partial
of a function; “∂2”, second-order partial derivative; “det”, determinant of a matrix.

Acknowledgments

The authors would like to thank the referee for valuable comments improving the paper. This work
was partially supported by NNSF of China (Grant No. 11901329) and the NNSF of Shandong Province
(Grant No. ZR2020QA008, ZR2019BA022).

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. S. L. Campbell, C. D. J. Meyer, Generalized inverses of linear transformations, London: Pitman
Publishing Limited, 1979. http://dx.doi.org/10.1137/1.9780898719048

2. Z. Gao, D. Ho, Proportional multiple-integral observer design for descriptor systems with
measurement output disturbances, IEE Proc. Contr. Theor. Appl., 151 (2004), 279–288.
http://dx.doi.org/10.1049/ip-cta:20040437(410)

3. Z. Gao, S. X. Ding, Actuator fault robust estimation and fault-tolerant control
for a class of nonlinear descriptor systems, Automatica, 43 (2007), 912–920.
http://dx.doi.org/10.1016/j.automatica.2006.11.018

4. Z. Gao, X. Shi, Observer-based controller design for stochastic descriptor systems with Brownian
motions, Automatica, 49 (2013), 2229–2235. http://dx.doi.org/10.1016/j.automatica.2013.04.001

5. R. R. Ismailov, K. B. Mansimov, Optimality conditions in a step control problem, Comput. Math.
Math. Phys., 46 (2006), 1674–1686. http://dx.doi.org/10.1134/S0965542506100058

6. R. R. Ismailov, K. B. Mansimov, Necessary optimality conditions for quasisingular
controls in a step control problem, Cybern. Syst. Anal., 44 (2008), 1674–1686.
http://dx.doi.org/10.1007/s10559-008-0007-8

7. J. Jaiswal, M. K. Gupta, N. K. Tomar, Necessary and sufficient conditions for
ODE observer design of descriptor systems, Syst. Control Lett., 151 (2021), 104916.
http://dx.doi.org/10.1016/j.sysconle.2021.104916

8. J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, New York:
Academic Press, 1971. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0

9. J. Y. Lin, Z. H. Yang, Optimal control problems for singular systems, Int. J. Control, 47 (1988),
1915–1924. http://dx.doi.org/10.1080/00207178808906146

AIMS Mathematics Volume 7, Issue 5, 9039–9056.

http://dx.doi.org/http://dx.doi.org/10.1137/1.9780898719048
http://dx.doi.org/http://dx.doi.org/10.1049/ip-cta:20040437(410)
http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2006.11.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2013.04.001
http://dx.doi.org/http://dx.doi.org/10.1134/S0965542506100058
http://dx.doi.org/http://dx.doi.org/10.1007/s10559-008-0007-8
http://dx.doi.org/http://dx.doi.org/10.1016/j.sysconle.2021.104916
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0
http://dx.doi.org/http://dx.doi.org/10.1080/00207178808906146


9056

10. S. F. Maharramov, Optimality conditions of a nonsmooth switching control systems, Autom.
Control. Comput. Sci., 42 (2008), 94–101. http://dx.doi.org/10.3103/S0146411608020077

11. K. B. Mansimov, Multipoint necessary optimality conditions of optimality of quasisingular
controls, Automat. Rem. Contr., 43 (1982), 1271–1275.

12. K. B. Mansimov, Singular controls in systems with delay, ELM, Baku, 1999.
http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0

13. R. O. Mastaliyev, Necessary conditions of optimality of the first and second order in a stepwise
optimal control problem with discrete-continuous systems, J. Automat. Inform. Sci., 47 (2015),
57–69. http://dx.doi.org/10.1615/JAutomatInfScien.v47.i6.50

14. S. Meherrem, Some remarks for a decomposition of linear-quadratic optimal control problems for
two-steps systems, J. Automat. Inform. Sci., 2015. Available from:
http://www.optimization-online.org/DB_HTML/2013/08/4006.html.

15. K. Mizukami, H. S. Wu, Optimal control problems for a class of nonlinear descriptor systems,
Trans. IEE Japan, 110 (2008), 396–403. http://dx.doi.org/10.1541/ieejeiss1987.110.6-396

16. B. S. Mordukhovich, I. Shvartsman, The approximate principle in constrained optimal control,
SIAM, 43 (2004), 1037–1062. http://dx.doi.org/10.1137/S0363012903433012

17. B. S. Mordukhovich, Variational analysis and generalized differentiation, Berlin: Springer-Verlag,
2005. http://dx.doi.org/10.1007/s10957-006-9142-4

18. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Mathematical theory of
optimal processes, Nauka, Moskow, 1969.

19. X. Wang, B. Liu, Singular linear quadratic optimal control problem for stochastic nonregular
descriptor systems, Asian J. Control, 20 (2018), 1–11. http://dx.doi.org/10.1002/asjc.1660

20. X. Wang, Optimal control of stochastic singular systems and generalized differential Riccati
equations, Unpublished work.

21. H. S. Wu, Generalized maximum principle for optimal control of generalized state-space systems,
Int. J. Control, 47 (1988), 373–380. http://dx.doi.org/10.1080/00207178808906016

22. H. Xu, K. Mizukami, Hamilton-Jacobi equation for descriptor systems, Syst. Control Lett., 21
(1993), 321–327. http://dx.doi.org/10.1016/0167-6911(93)90075-H

23. H. Xu, K. Mizukami, Derivation of a maximum principle for descriptor systems without
an admissible initial condition assumption, J. Franklin Inst., 332 (1995), 633–642.
http://dx.doi.org/10.1016/0016-0032(95)00067-4

24. X. H. Zhang, Q. L. Zhang, Optimal control of discrete generalized linear systems, J. Northeast.
Univ., 19 (1998), 435–438.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 5, 9039–9056.

http://dx.doi.org/http://dx.doi.org/10.3103/S0146411608020077
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0
http://dx.doi.org/http://dx.doi.org/10.1615/JAutomatInfScien.v47.i6.50
http://www.optimization-online.org/DB_HTML/2013/08/4006.html.
http://dx.doi.org/http://dx.doi.org/10.1541/ieejeiss1987.110.6-396
http://dx.doi.org/http://dx.doi.org/10.1137/S0363012903433012
http://dx.doi.org/http://dx.doi.org/10.1007/s10957-006-9142-4
http://dx.doi.org/http://dx.doi.org/10.1002/asjc.1660
http://dx.doi.org/http://dx.doi.org/10.1080/00207178808906016
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6911(93)90075-H
http://dx.doi.org/http://dx.doi.org/10.1016/0016-0032(95)00067-4
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	First-order necessary conditions 
	Generalized second-order necessary conditions
	Unknown switching point case
	Conclusions

