In this paper we treat the problem of connection between the convergence in $ m- $capacity and the convergence of the Hessian measure for a sequence$ f_j $ of $ m- $subharmonic functions. We prove first that, under some conditions, the convergence of $ f_j $ in capacity $ Cap_m $ implies the weak convergence of the Hessian measures $ H_m(f_j) $. Then we show that the converse sense of convergence is also true in some particular cases.
Citation: Jawhar Hbil, Mohamed Zaway. Some results on the convergence of Hessian operator and $ m-$subharmonic functions[J]. AIMS Mathematics, 2022, 7(5): 9023-9038. doi: 10.3934/math.2022502
In this paper we treat the problem of connection between the convergence in $ m- $capacity and the convergence of the Hessian measure for a sequence$ f_j $ of $ m- $subharmonic functions. We prove first that, under some conditions, the convergence of $ f_j $ in capacity $ Cap_m $ implies the weak convergence of the Hessian measures $ H_m(f_j) $. Then we show that the converse sense of convergence is also true in some particular cases.
[1] | E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta. Math., 149 (1982), 1–40. https://doi.org/10.1007/BF02392348 doi: 10.1007/BF02392348 |
[2] | E. Bedford, B. A. Taylor, Fine topology, $\check{S}ilov$ boundary and $(dd^c)^n$, J. Funct. Anal., 72 (1987), 225–251. https://doi.org/10.1016/0022-1236(87)90087-5 doi: 10.1016/0022-1236(87)90087-5 |
[3] | Z. Blocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier, Grenoble, 55 (2005), 1735–1756. |
[4] | A. Dhouib, F. Elkhadhra, $m-$Potential theory associated to a positive closed current in the class of $m-$sh functions, Complex Var. Elliptic Eq., 61 (2016), 875–901. https://doi.org/10.1080/17476933.2015.1133615 doi: 10.1080/17476933.2015.1133615 |
[5] | S. Kolodziej, The complex Monge-Ampére equation and theory, American Mathematical Soc., 2005. |
[6] | H. C. Lu, A variational approach to complex Hessian equations in $ \mathbb{C}^n$, J. Math. Anal. Appl., 431 (2015), 228–259. https://doi.org/10.1016/j.jmaa.2015.05.067 doi: 10.1016/j.jmaa.2015.05.067 |
[7] | H. C. Lu, Equations Hessiennes complexes, Ph.D Thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2012. |
[8] | P. Lelong, Discontinuité et annulation de l'opérateur de Monge-Ampére complexe, In: P. Lelong, P. Dolbeault, H. Skoda, Séminaire d'analyse, Springer, 1028 (1983), 219–224. https://doi.org/10.1007/BFb0071683 |
[9] | Y. Xing, Continuity of the complex Monge-Ampére operator, Proc. Amer. Math. Soc., 124 (1996), 457–467. https://doi.org/10.1090/S0002-9939-96-03316-3 doi: 10.1090/S0002-9939-96-03316-3 |
[10] | Y. Xing, Complex Monge-Ampére measures of plurisubharmonic functions with bounded values near the boundary, Can. J. Math., 52 (2000), 1085–1100. https://doi.org/10.4153/CJM-2000-045-x doi: 10.4153/CJM-2000-045-x |