The goal of this manuscript is to obtain some tripled fixed point results under a new contractive condition and triangular property in the context of fuzzy cone metric spaces (F$ _{\text{CM}} $-spaces). Moreover, two examples and corollaries are given to validate our work. Ultimately, as applications, the notion of Lebesgue integral is represented by the fuzzy method to discuss the existence of fixed points. Also, the existence and uniqueness solution for a system of Volterra integral equations are studied by the theoretical results.
Citation: Hasanen A. Hammad, Hassen Aydi, Choonkil Park. Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in F$ _{\text{CM}} $-spaces[J]. AIMS Mathematics, 2022, 7(5): 9003-9022. doi: 10.3934/math.2022501
The goal of this manuscript is to obtain some tripled fixed point results under a new contractive condition and triangular property in the context of fuzzy cone metric spaces (F$ _{\text{CM}} $-spaces). Moreover, two examples and corollaries are given to validate our work. Ultimately, as applications, the notion of Lebesgue integral is represented by the fuzzy method to discuss the existence of fixed points. Also, the existence and uniqueness solution for a system of Volterra integral equations are studied by the theoretical results.
[1] | V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. Theor., 74 (2011), 4889–4897. http://dx.doi.org/10.1016/j.na.2011.03.032 doi: 10.1016/j.na.2011.03.032 |
[2] | M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 5929–5936. http://dx.doi.org/10.1016/j.amc.2011.11.049 doi: 10.1016/j.amc.2011.11.049 |
[3] | T. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor., 65 (2006), 1379–1393. http://dx.doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017 |
[4] | L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. http://dx.doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[5] | L. V. Kantorovich, The method of successive approximations for functional equations, Acta Math., 71 (1939), 63–97. http://dx.doi.org/10.1007/BF02547750 doi: 10.1007/BF02547750 |
[6] | J. Schroder, Das Iterationsverfahren bei allgemeinerem Abstandsbegriff, Math. Z., 66 (1956), 111–116. http://dx.doi.org/10.1007/BF01186599 doi: 10.1007/BF01186599 |
[7] | P. P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math., 48 (1997), 825–859. |
[8] | I. A. Rus, A. Petrusel, G. Petrusel, Fixed point theory, Cluj-Napoca: Cluj University Press, 2008. |
[9] | S. Rezapour, R. Hamlbarani, Some notes on the paper: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345 (2008), 719–724. http://dx.doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049 |
[10] | A. Amini-Harandi, M. Fakhar, Fixed point theory in cone metric spaces obtained via the scalarization method, Comput. Math. Appl., 59 (2010), 3529–3534. http://dx.doi.org/10.1016/j.camwa.2010.03.046 doi: 10.1016/j.camwa.2010.03.046 |
[11] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |
[12] | D. Dubois, H. Prade, Fuzzy sets and systems, New York: Academic Press, 1988. |
[13] | P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Kluwer Acad. Press, 2000. |
[14] | G. J. Klir, T. A. Folder, Fuzzy sets, uncertainty and information, Englewood Cliffs: Prentice Hall, 1988. |
[15] | M. Mares, Computations over fuzzy quantities, Boca Raton: CRC–Press, 1994. |
[16] | O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[17] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. http://dx.doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[18] | T. Oner, M. B. Kandemire, B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 610–616. http://dx.doi.org/10.22436/jnsa.008.05.13 |
[19] | S. U. Rehman, H. Aydi, Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to Fredholm integral equations, J. Funct. Space., 2021 (2021), 5527864. http://dx.doi.org/10.1155/2021/5527864 doi: 10.1155/2021/5527864 |
[20] | T. Oner, On some results in fuzzy cone metric spaces, International Journal of Advanced Computational Engineering and Networking, 4 (2016), 37–39. |
[21] | K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. http://dx.doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707 |
[22] | S. Jabeen, S. U. Rehman, Z. Zheng, W. Wei, Weakly compatible and quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations, Adv. Differ. Equ., 2020 (2020), 280. http://dx.doi.org/10.1186/s13662-020-02743-5 doi: 10.1186/s13662-020-02743-5 |
[23] | H. A. Hammad, M. De la Sen, Exciting fixed point results under a new control function with supportive application in fuzzy cone metric spaces, Mathematics, 9 (2021), 2267. http://dx.doi.org/10.3390/math9182267 doi: 10.3390/math9182267 |
[24] | M. T. Waheed, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, Some new coupled fixed-point findings depending on another function in fuzzy cone metric spaces with application, Math. Probl. Eng., 2021 (2021), 4144966. http://dx.doi.org/10.1155/2021/4144966 doi: 10.1155/2021/4144966 |
[25] | I. Aziz, I. Siraj-Ul, F. Khan, A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations, J. Comput. Appl. Math., 272 (2014), 70–80. http://dx.doi.org/10.1016/j.cam.2014.04.027 doi: 10.1016/j.cam.2014.04.027 |
[26] | A. Doucet, A. M. Johansen, V. B. Tadić, On solving integral equations using Markov chain Monte Carlo methods, Appl. Math. Comput., 216 (2010), 2869–2880. http://dx.doi.org/10.1016/j.amc.2010.03.138 doi: 10.1016/j.amc.2010.03.138 |
[27] | J. R. Loh, C. Phang, A new numerical scheme for solving system of Volterra integro-differential equation, Alex. Eng. J., 57 (2018), 1117–1124. http://dx.doi.org/10.1016/j.aej.2017.01.021 doi: 10.1016/j.aej.2017.01.021 |
[28] | M. Higazy, S. Aggarwal, T. A. Nofal, Sawi decomposition method for Volterra integral equation with application, J. Math., 2020 (2020), 6687134. http://dx.doi.org/10.1155/2020/6687134 doi: 10.1155/2020/6687134 |
[29] | Y. Shi, J. Wen, J. Xiong, Backward doubly stochastic Volterra integral equations and their applications, J. Differ. Equations, 269 (2020), 6492–6528. http://dx.doi.org/10.1016/j.jde.2020.05.006 doi: 10.1016/j.jde.2020.05.006 |
[30] | Y. Yong, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Relat. Fields, 142 (2008), 21–77. http://dx.doi.org/10.1007/s00440-007-0098-6 doi: 10.1007/s00440-007-0098-6 |
[31] | J. Rashidinia, M. Zarebnia, Solution of a Volterra integral equation by the Sinc-collocation method, J. Comput. Appl. Math., 206 (2007), 801–813. http://dx.doi.org/10.1016/j.cam.2006.08.036 doi: 10.1016/j.cam.2006.08.036 |
[32] | E. S. Shoukralla, B. M. Ahmed, Multi-techniques method for solving Volterra integral equations of the second kind, 14th International Conference on Computer Engineering and Systems (ICCES), 2019. http://dx.doi.org/10.1109/ICCES48960.2019.9068138 |
[33] | Z. Hong, X. Fang, Z. Yan, H. Hao, On solving a system of Volterra integral equations with relaxed Monte Carlo method, J. Appl. Math. Phys., 4 (2016), 1315–1320. http://dx.doi.org/10.4236/jamp.2016.47140 doi: 10.4236/jamp.2016.47140 |
[34] | B. Chweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313–334. http://dx.doi.org/10.2140/pjm.1960.10.313 |
[35] | S. U. Rehman, H. X. Li, Fixed point theorems in fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 5763–5769. http://dx.doi.org/10.22436/jnsa.010.11.14 doi: 10.22436/jnsa.010.11.14 |
[36] | A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 641824. http://dx.doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524 |
[37] | H. A. Hammad, H. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Funct. Space., 2021 (2021), 6613774. http://dx.doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774 |
[38] | H. A. Hammad, M. De la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via ${F_w}_e$-Suzuki contractions in modified $w_e$-metric-like spaces, J. Funct. Space., 2021 (2021), 6128586. http://dx.doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586 |