In this paper, we present some generalized multi-valued contraction results on cone metric spaces. We use some maximum and sum types of contractions for a pair of multi-valued mappings to prove some common fixed point theorems on cone metric spaces without the condition of normality. We present an illustrative example for multi-valued contraction mappings to support our work. Moreover, we present a supportive application of nonlinear integral equations to validate our work. This new theory, can be modified in different directions for multi-valued mappings to prove fixed point, common fixed point and coincidence point results in the context of different types of metric spaces with the application of different types of integral equations.
Citation: Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen. A novel approach of multi-valued contraction results on cone metric spaces with an application[J]. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630
In this paper, we present some generalized multi-valued contraction results on cone metric spaces. We use some maximum and sum types of contractions for a pair of multi-valued mappings to prove some common fixed point theorems on cone metric spaces without the condition of normality. We present an illustrative example for multi-valued contraction mappings to support our work. Moreover, we present a supportive application of nonlinear integral equations to validate our work. This new theory, can be modified in different directions for multi-valued mappings to prove fixed point, common fixed point and coincidence point results in the context of different types of metric spaces with the application of different types of integral equations.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[3] | A. Belhenniche, L. Guran, S. Benahmed, F. L. Pereira, Solving nonlinear and dynamic programming equations on extended $b$-metric spaces with the fixed-point technique, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 1–22. http://doi.org/10.1186/s13663-022-00736-5 doi: 10.1186/s13663-022-00736-5 |
[4] | J. J. Nieto, R. Rodeígues-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Engl. Ser., 23 (2007), 2205–2212. http://doi.org/10.1007/s10114-005-0769-0 doi: 10.1007/s10114-005-0769-0 |
[5] | D. Paesano, P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topol. Appl., 159 (2012), 911–920. http://doi.org/10.1016/j.topol.2011.12.008 doi: 10.1016/j.topol.2011.12.008 |
[6] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorems in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. http://doi.org/10.2307/4097222 doi: 10.2307/4097222 |
[7] | I. A. Rus, Genralized contractions and applications, Cluj University Press, 2001. |
[8] | R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered $G$-metric spaces, Math. Comput. Modell., 52 (2010), 797–801. http://doi.org/10.1016/j.mcm.2010.05.009 doi: 10.1016/j.mcm.2010.05.009 |
[9] | I. Shamas, S. Ur Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations, J. Funct. Spaces, 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173 |
[10] | I. Shamas, S. Ur Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, A new approach to fuzzy differential equations using weakly-compatible self-mappings in fuzzy metric spaces, J. Funct. Spaces, 2021 (2021), 6123154. https://doi.org/10.1155/2021/6123154 doi: 10.1155/2021/6123154 |
[11] | G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive maps, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[12] | M. Abbas, G. Jungck, Common fixed point results for non-commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416–420. https://doi.org/10.1016/j.jmaa.2007.09.070 doi: 10.1016/j.jmaa.2007.09.070 |
[13] | D. Ilic, V. Rakovcevic, Common fixed points for maps on cone metric spaces, J. Math. Anal. Appl., 341 (2008), 876–882. https://doi.org/10.1016/j.jmaa.2007.10.065 doi: 10.1016/j.jmaa.2007.10.065 |
[14] | P. Vetro, Common fixed points in cone metric spaces, Rend. Cricolo Math. Palermo, 56 (2007), 464–468. https://doi.org/10.1007/BF03032097 doi: 10.1007/BF03032097 |
[15] | M. Abbas, M. A. Khan, S. Radenovic, Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042 |
[16] | T. Abdeljawad, E. Karapinar, K. Tas, Common fixed point theorems in cone Banach spaces, Hacettepe J. Math. Stat., 40 (2011), 211–217. |
[17] | T. Abdeljawad, E. Karapinar, Quasi-cone metric spaces and generalizations of Caristi Kirk's theorem, Fixed Point Theory Appl., 2009 (2009), 574387. https://doi.org/10.1155/2009/574387 doi: 10.1155/2009/574387 |
[18] | I. Altun, B. Damjanovic, D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., 23 (2010), 310–316. https://doi.org/10.1016/j.aml.2009.09.016 doi: 10.1016/j.aml.2009.09.016 |
[19] | S. Jankovic, Z. Kadelburg, S. Radenovic, On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014 |
[20] | E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl., 2009 (2009), 609281. https://doi.org/10.1155/2009/609281 doi: 10.1155/2009/609281 |
[21] | E. Karapinar, Some nonunique fixed point theorems of Ciric type on cone metric spaces, Abstr. Appl. Anal., 2010 (2010), 123094. https://doi.org/10.1155/2010/123094 doi: 10.1155/2010/123094 |
[22] | E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656–3668. https://doi.org/10.1016/j.camwa.2010.03.062 doi: 10.1016/j.camwa.2010.03.062 |
[23] | M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappins, Fixed Point Theory Appl., 2010 (2010), 315398. https://doi.org/10.1155/2010/315398 doi: 10.1155/2010/315398 |
[24] | A. Kumar, S. Rathee, Fixed point and common fixed point results in cone metric space and application to invariant approximation, Fixed Point Theory Appl., 2015 (2015), 45. https://doi.org/10.1186/s13663-015-0290-9 doi: 10.1186/s13663-015-0290-9 |
[25] | S. Rezapour, R. Hamlbarani, Some note on the paper "cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl., 345 (2008), 719–724. https://doi.org/10.1016/j.jmaa.2008.04.049 doi: 10.1016/j.jmaa.2008.04.049 |
[26] | S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475 |
[27] | H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Isr. J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543 |
[28] | B. Damjanović, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci., 32 (2012), 818–824. https://doi.org/10.1016/S0252-9602(12)60063-0 doi: 10.1016/S0252-9602(12)60063-0 |
[29] | S. Radinovic, Z. Kadelburg, Some results on fixed points of multifunctions on abstract metric spaces, Math. Comput. Modell., 53 (2011), 746–754. https://doi.org/10.1016/j.mcm.2010.10.012 doi: 10.1016/j.mcm.2010.10.012 |
[30] | K. Neammanee, A. Kaewkhao, Fixed point theorems for multi-valued Zamfirescu mapping, J. Math. Res., 2010 (2010), 150–156. https://doi.org/10.5539/JMR.V2N2P150 doi: 10.5539/JMR.V2N2P150 |
[31] | S. Ur Rehman, H. Aydi, G. X. Chen, S. Jabeen, S. U. Khan, Some set-valued and multi-valued contraction results in fuzzy cone metric spaces, J. Ineqal. Appl., 2021 (2021), 110. https://doi.org/10.1186/s13660-021-02646-3 doi: 10.1186/s13660-021-02646-3 |
[32] | S. Rezapour, R. H. Haghi, Fixed point on multifunctions on cone metric spaces, Numer. Funct. Anal. Optim., 30 (2010), 825–832. https://doi.org/10.1080/01630560903123346 doi: 10.1080/01630560903123346 |
[33] | D. Klim, D. Wardowski, Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces, Nonlinear Anal., 71 (2009), 5170–5175. https://doi.org/10.1016/j.na.2009.04.001 doi: 10.1016/j.na.2009.04.001 |
[34] | A. Latif, F. Y. Shaddad, Fixed point results for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2010 (2010), 941371. https://doi.org/10.1155/2010/941371 doi: 10.1155/2010/941371 |
[35] | S. H. Cho, J. S. Bae, Fixed point theorems for multivalued maps in cone metric spaces, Fixed Point Theory Appl., 2011 (2011), 87. https://doi.org/10.1186/1687-1812-2011-87 doi: 10.1186/1687-1812-2011-87 |
[36] | D. Wardowaski, On set-valued contractions of nadler type in cone metric spaces, Appl. Math. Lett., 24 (2011), 275–278. https://doi.org/10.1016/j.aml.2010.10.003 doi: 10.1016/j.aml.2010.10.003 |
[37] | N. Mehmood, A. Azam, L. D. R. Ko$\check{c}$inac, Multivalued fixed point results in cone metric spaces, Topol. Appl., 179 (2015), 156–170. https://doi.org/10.1016/j.topol.2014.07.011 doi: 10.1016/j.topol.2014.07.011 |
[38] | N. Mehmood, A. Azam, L. D. R. Ko$\check{c}$inac, Multivalued $\mathcal{R}_{\psi, \phi}$-weakly contractive mappings in ordered cone metric spaces with applications, Fixed Point Theory, 18 (2017), 673–688. https://doi.org/10.24193/fpt-ro.2017.2.54 doi: 10.24193/fpt-ro.2017.2.54 |
[39] | R. Fierro, Fixed point theorems for set-valued mappings on TVS-cone metric spaces, Fixed Point Theory Appl., 2015 (2015), 221. https://doi.org/10.1186/s13663-015-0468-1 doi: 10.1186/s13663-015-0468-1 |
[40] | S. Ur Rehman, S. Jabeen, H. Ullah, Some multi-valued contraction theorems on $H$-cone metric, J. Adv. Stud. Topol., 10 (2019), 11–24. |
[41] | R. P. Agarwal, N. Hussain, M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), 245872. https://doi.org/10.1155/2012/245872 doi: 10.1155/2012/245872 |
[42] | H. Aydi, M. Jellali, E. Karapinar, On fixed point results for $\alpha$-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal., 21 (2016), 40–56. https://doi.org/10.15388/NA.2016.1.3 doi: 10.15388/NA.2016.1.3 |
[43] | M. T. Waheed, S. Ur Rehman, N. Jan, A. Gumaei, M. Al-Khamsi, Some new coupled fixed-point findings depending on another function in fuzzy cone metric spaces, Math. Probl. Eng., 2021 (2021), 4144966. https://doi.org/10.1155/2021/4144966 doi: 10.1155/2021/4144966 |
[44] | M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803 |
[45] | M. Abu-Shady, M. K. A. Kaabar, A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady-Kaabar fractional derivative, Comput. Math. Methods Med., 2022 (2022), 2138775. https://doi.org/10.1155/2022/2138775 doi: 10.1155/2022/2138775 |