Research article

Some new Chebyshev type inequalities utilizing generalized fractional integral operators

  • Received: 03 October 2019 Accepted: 28 November 2019 Published: 14 January 2020
  • MSC : 26D15, 26A33, 26D10

  • Chebyshev type inequalities for the generalized fractional integral operators are studied based on two synchronous functions in a rather general form. The main results of this paper generalize some previous results obtained by the authors. We also present the special cases of related inequalities for this type of fractional integral is obtained.

    Citation: Fuat Usta, Hüseyin Budak, Mehmet Zeki Sarıkaya. Some new Chebyshev type inequalities utilizing generalized fractional integral operators[J]. AIMS Mathematics, 2020, 5(2): 1147-1161. doi: 10.3934/math.2020079

    Related Papers:

  • Chebyshev type inequalities for the generalized fractional integral operators are studied based on two synchronous functions in a rather general form. The main results of this paper generalize some previous results obtained by the authors. We also present the special cases of related inequalities for this type of fractional integral is obtained.


    加载中


    [1] S. Belarbi, Z. Dahmani, On Some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1-12.
    [2] K. Boukerrioua, A. G. Lakoud, On generalization of Čebyšev type inequalities, J. Inequal. Pure Appl. Math., 8 (2007), 1-9.
    [3] P. L. Čebyšev, Sur less expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
    [4] J. Choi, P. Agarwal, Certain fractional integral inequalities involving hypergeometric operators, East Asian Mathematical Journal, 30 (2014), 283-291. doi: 10.7858/eamj.2014.018
    [5] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497.
    [6] Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44.
    [7] S. S. Dragomir, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Annal. Appl., 237 (1999), 74-82. doi: 10.1006/jmaa.1999.6452
    [8] A. G. Lakoud, F. Aissaouinew, New Čebyšev type inequalities for double integrals, J. Math. Inequal., 5 (2011), 453-462.
    [9] T. Hayat, S. Nadeem, S. Asghar, Periodic unidirectional fows of a viscoelastic fluid with the fractional Maxwell model, Appl. Math. Comput., 151 (2004), 153-161.
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
    [11] S. M. Malamud, Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc., 129 (2001), 2671-2678.
    [12] S. Momani, Z. Odiba, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207(2007), 96-110. doi: 10.1016/j.cam.2006.07.015
    [13] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
    [14] R. K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian mathematical journal, 21 (2005), 191-203.
    [15] B. G. Pachpatte, On Čebyšev-Grüss type inequalities via Pecaric's extention of the Montgomery identity, J. Inequal. Pure Appl. Math., 7 (2006), 1-10.
    [16] J. E. Pecaric, On the Čebyšev inequality, Bul. Sti. Tehn. Inst. Politehn "Tralan Vuia" Timişora(Romania), 25 (1980), 5-9.
    [17] M. Z. Sarıkaya, N. Aktan, H. Yıldırım, Weighted Čebyšev-Grüss type inequalities on time scales, J. Math. Inequal., 2 (2008), 185-195.
    [18] W. T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal., 2 (2011), 23-28.
    [19] F. Usta, H. Budak and M. Z. Sarıkaya, On Chebyshev type inequalities for fractional integral operators, AIP Conf. Proc., 1833 (2017), 1-4.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3115) PDF downloads(408) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog