Research article

Lyapunov-type inequalities for Hadamard type fractional boundary value problems

  • Received: 03 November 2019 Accepted: 29 December 2019 Published: 14 January 2020
  • MSC : Primary: 34A08, 34A40; Secondary: 26D10, 33E12, 34C10

  • In this paper, we present few Lyapunov-type inequalities for Hadamard fractional boundary value problems associated with different sets of boundary conditions. Further, we discuss two applications of the established results.

    Citation: Jaganmohan Jonnalagadda, Basua Debananda. Lyapunov-type inequalities for Hadamard type fractional boundary value problems[J]. AIMS Mathematics, 2020, 5(2): 1127-1146. doi: 10.3934/math.2020078

    Related Papers:

  • In this paper, we present few Lyapunov-type inequalities for Hadamard fractional boundary value problems associated with different sets of boundary conditions. Further, we discuss two applications of the established results.


    加载中


    [1] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Mathematics, 4 (2019), 1101-1113. doi: 10.3934/math.2019.4.1101
    [2] B. Ahmad, S. K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 348-360.
    [3] B. Ahmad, S. K. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput., 47 (2015), 119-131. doi: 10.1007/s12190-014-0765-6
    [4] D. Basua, J. M. Jonnalagadda, Lyapunov-type inequality for Riemann-Liouville type fractional boundary value problems, Novi Sad J. Math., 49 (2019), 137-152.
    [5] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1-27. doi: 10.1016/S0022-247X(02)00001-X
    [6] R. C. Brown, D. B. Hinton, Lyapunov inequalities and their applications, In: Survey on Classical Inequalities, Springer, Dordrecht, 2000, 1-25.
    [7] S. Dhar, On linear and non-linear fractional Hadamard boundary value problems, J. Math. Ineq., 10 (2018), 329-339.
    [8] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.
    [9] R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063. doi: 10.1016/j.jmaa.2013.11.025
    [10] J. M. Jonnalagadda, B. Debananda, D. K. Satpathi, Lyapunov-type inequality for an anti-periodic conformable boundary value problem, Kragujevac J. Math., 45 (2021), 289-298.
    [11] M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equations with mixed boundary conditions, Math. Inequal. Appl., 18 (2015), 443-451.
    [12] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006.
    [13] A. K. Anatoly, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
    [14] A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse: Math., 9 (1907), 203-474. doi: 10.5802/afst.246
    [15] Z. Laadjal, N. Adjeroud, Q. Ma, Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a, b], J. Math. Inequal., 13 (2019), 789-799.
    [16] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional equations, Wiley, 1993.
    [17] Q. Ma, C. Ma, J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Inequal., 11 (2017), 135-141.
    [18] Q. Ma, J. Wang, R. Wang, et al. Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Lett., 36 (2014), 7-13. doi: 10.1016/j.aml.2014.04.009
    [19] J. Mao, Z. Zhao, C. Mang, The unique positive solution for singular Hadamard fractional boundary value problems, J. Funct. Space., 2019 (2019).
    [20] X. Meng, M. Stynes, Green's functions, positive solutions, and a Lyapunov inequality for a Caputo fractional-derivative boundary value problem, Fract. Calcu. Appl. Anal., 22 (2019), 750-766. doi: 10.1515/fca-2019-0041
    [21] S. K. Ntouyas, B. Ahmad, T. P. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, In: Differential and Integral Inequalities, Springer, Cham, 2019, 619-686.
    [22] B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Math. Anal. Appl., 195 (1995), 527-536. doi: 10.1006/jmaa.1995.1372
    [23] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [24] J. Rong, C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions, Adv. Differ. Equ-ny., 2015 (2015), 82.
    [25] A. Tiryaki, Recent developments of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl., 5 (2010), 231-248.
    [26] G. Wang, K. Pei, R. P. Agarwal, et al. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239. doi: 10.1016/j.cam.2018.04.062
    [27] G. Wang, K. Pei, Y. Q. Chen, Stability analysis of nonlinear Hadamard fractional differential system, J. Frankli. I., 356 (2019), 6538-6546. doi: 10.1016/j.jfranklin.2018.12.033
    [28] J. R. Wang, Y. Zhou, M. Medve$\mathop {\rm{d}}\limits^ \vee $, Existence and stability of fractional differential equations with Hadamard derivative, Topol. Method. Nonl. An., 41 (2013), 113-133.
    [29] X. Yang, Y. i. Kim, K. Lo, Lyapunov-type inequality for a class of even-order linear differential equations, Appl. Math. Comput., 245 (2014), 145-151.
    [30] X. Yang, Y. I. Kim, K. Lo, Lyapunov-type inequalities for a class of higher-order linear differential equations, Appl. Math. Lett., 34 (2014), 86-89. doi: 10.1016/j.aml.2013.11.001
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3423) PDF downloads(412) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog