The aim of this paper is to establish some fixed point results for enriched Kannan-type mappings in convex metric spaces. We first give an affirmative answer to a recent Berinde and Păcurar's question (Remark 2.3) [J. Comput. Appl. Math., 386 (2021), 113217]. Furthermore, we establish the existence and uniqueness of fixed points for Suzuki-enriched Kannan-type mappings in the setting of convex metric spaces. Finally, we present an application to approximate the solution of the Volterra integral equations to support our results.
Citation: Yao Yu, Chaobo Li, Dong Ji. Fixed point theorems for enriched Kannan-type mappings and application[J]. AIMS Mathematics, 2024, 9(8): 21580-21595. doi: 10.3934/math.20241048
The aim of this paper is to establish some fixed point results for enriched Kannan-type mappings in convex metric spaces. We first give an affirmative answer to a recent Berinde and Păcurar's question (Remark 2.3) [J. Comput. Appl. Math., 386 (2021), 113217]. Furthermore, we establish the existence and uniqueness of fixed points for Suzuki-enriched Kannan-type mappings in the setting of convex metric spaces. Finally, we present an application to approximate the solution of the Volterra integral equations to support our results.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. http://dx.doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 38. http://dx.doi.org/10.1007/s11784-020-0769-9 doi: 10.1007/s11784-020-0769-9 |
[3] | L. Chen, C. Li, R. Kaczmarek, Y. Zhao, Several fixed point theorems in convex b-metric spaces and applications, Mathematics, 8 (2020), 242. http://dx.doi.org/10.3390/math8020242 doi: 10.3390/math8020242 |
[4] | M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. http://dx.doi.org/10.1090/S0002-9939-1973-0334176-5 |
[5] | E. Karapinar, On best proximity point of $\varphi-$Geraghty contractions, Fixed Point Theory Appl., 2013 (2013), 200. http://dx.doi.org/10.1186/1687-1812-2013-200 doi: 10.1186/1687-1812-2013-200 |
[6] | D. Ji, Y. Yu, C. Li, Fixed point and endpoint theorems of multivalued mappings in convex $b$-metric spaces with an application, AIMS Mathematics, 9 (2024), 7589–7609. http://dx.doi.org/10.3934/math.2024368 doi: 10.3934/math.2024368 |
[7] | M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., s1-37 (1962), 74–79. http://dx.doi.org/10.1112/jlms/s1-37.1.74 doi: 10.1112/jlms/s1-37.1.74 |
[8] | T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal.-Theor., 71 (2009), 5313–5317. http://dx.doi.org/10.1016/j.na.2009.04.017 doi: 10.1016/j.na.2009.04.017 |
[9] | R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76. |
[10] | R. Kannan, Some results on fixed points-II, American Mathematical Monthly, 76 (1969), 405–408. http://dx.doi.org/10.1080/00029890.1969.12000228 doi: 10.1080/00029890.1969.12000228 |
[11] | P. Subrahmanyam, Completeness and fixed-points, Monatsh Math., 80 (1975), 325–330. http://dx.doi.org/10.1007/BF01472580 doi: 10.1007/BF01472580 |
[12] | B. Fisher, A fixed point theorem for compact metric spaces, Publ. Math. Debrecen, 25 (1978), 193–194. |
[13] | V. Berinde, M. Păcurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217. http://dx.doi.org/10.1016/j.cam.2020.113217 doi: 10.1016/j.cam.2020.113217 |
[14] | W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., 22 (1970), 142–149. http://dx.doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111 |
[15] | M. Choban, About convex structures on metric spaces, Carpathian J. Math., 38 (2022), 391–404. http://dx.doi.org/10.37193/CJM.2022.02.10 doi: 10.37193/CJM.2022.02.10 |
[16] | S. Khan, M. Abbas, Common fixed point results with applications in convex metric spaces, Journal of Concrete and Applicable Mathematics, 10 (2012), 65–76. |
[17] | V. Berinde, M. Păcurar, Existence and approximation of fixed points of enriched contractions and enriched $\varphi$-contractions, Symmetry, 13 (2021), 498. http://dx.doi.org/10.3390/sym13030498 doi: 10.3390/sym13030498 |
[18] | J. Górnicki, Various extensions of Kannan's fixed point theorem, J. Fixed Point Theory Appl., 20 (2018), 20. http://dx.doi.org/10.1007/s11784-018-0500-2 doi: 10.1007/s11784-018-0500-2 |
[19] | H. Garai, K. Dey, T. Senapati, On Kannan-type contractive mappings, Numer. Func. Anal. Opt., 39 (2018), 1466–1476. http://dx.doi.org/10.1080/01630563.2018.1485157 doi: 10.1080/01630563.2018.1485157 |
[20] | K. Roya, S. Panjab, M. Sahab, R. Bishtc, On fixed points of generalized Kannan and Reich type contractive mappings, Filomat, 37 (2023), 9079–9087. http://dx.doi.org/10.2298/FIL2326079R doi: 10.2298/FIL2326079R |